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An Introdu
tion to Monotoni
ity Methods 471. Introdu
tionMany nonlinear kineti
 equations for 
omplex systems appear as generaliza-tion of the 
lassi
al Boltzmann equation (see, e.g. [4℄). The last years havebeen marked by an in
reased interest in the mathemati
al properties of su
hmodels. This 
an be explained by various appli
ations not only in physi
s,astrophysi
s and 
hemistry (e.g. studies of simple and 
omplex/rea
ting �u-ids, granular media, 
oagulation-fragmentation, formation of planetary rings,galaxy 
ollision) but also in modeling evolution pro
esses in immunology,tra�
 �ow, 
ommuni
ation networks, et
.In many situations, the above equations are phenomenologi
al or mi
ros
opi
models that des
ribe the evolution of various populations (ma
ros
opi
 sys-tems) of many well individualized, obje
ts (e.g. rare�ed gas parti
les, 
ellsnetworks signals et
.) intera
ting among themselves. The intera
tions are(lo
alized) mi
ros
opi
 pro
esses: a) any intera
tion has a very short du-ration, with respe
t to the time-s
ale of the ma
ros
opi
 evolution; b) thenumber of partners of any intera
tion is very small, with respe
t to the totalnumber of the 
omponents of the population. Depending on the model, an in-tera
tion may 
hange the state, nature and/or the number of the parti
ipantsin intera
tion. This may result in modi�
ations of the values of the physi
alquantities 
hara
terizing the states of the intera
ting obje
ts. However, su
hmodi�
ations must be 
onsistent with 
ertain balan
e laws (e.g. 
onservation/dissipation laws ) imposed by the pe
uliarities of the mi
ros
opi
 pro
esses.The problem of the existen
e and uniqueness of solutions of the above modelsis not only of an a
ademi
 interest. Indeed, good 
riteria for the existen
e ofgeneral solutions and a detailed study of the properties of the solutions 
anbe parti
ularly useful in obtaining e�e
tive 
onvergent numeri
al s
hemes forthe models.The above models present some mathemati
al properties, similar to those ofthe 
lassi
al Boltzmann equation, in parti
ular similar monotoni
ity proper-ties (with respe
t to the order). This made possible to extend nontriviallymonotoni
ity methods, initially introdu
ed for the 
lassi
al Boltzmann equa-tion, [2℄ (see also [28℄) to study these models [18℄, [27℄, [9℄, [7℄. Re
entlythe ideas of [2℄ and [28℄) have been re
onsidered nontrivially within a moregeneral, abstra
t framework, [11℄, [12℄, [13℄. The present work is a surveyof the re
ent progress in the domain, and in
ludes �ve se
tions and an Ap-pendix. This Introdu
tion is the �rst Se
tion. The next Se
tion, is a briefpresentation, at formal level, of some relevant examples of Boltzmann modelsfor 
omplex systems. In Se
tion 3, we introdu
e a 
lass of abstra
t evolution



48 Ce
il Pompiliu Grünfeldproblems, as a generalization of the examples 
onsidered in Se
tion 2. Thenwe develop the general existen
e theory based on monotoni
ity arguments.Se
tion 4 is devoted to appli
ations. Finally, Se
tion 5 
ontains 
on
lusionsand open problems.2. Boltzmann-like kineti
 modelsIn this se
tion we present several nonlinear models with nonlinear singulari-ties, that exhibit similar isotoni
ity properties. In very general terms, theseequations are essentially des
ribed by nonlinear evolution equations of theform
df

dt
= Af +Q(t, f), t > 0, (2.1)formulated in the positive 
one of some suitable ordered fun
tion spa
e X,usually an ordered Bana
h spa
e. The unknown f = f(t) 
hara
terizes thestate of the ma
ros
opi
 system at time t. The two terms of the r.h.s. ofEq.(2.1), Af (possibly A = 0) and Q(t, f) des
ribe the free motion and the
ontribution of the intera
tion pro
esses, respe
tively. From a mathemati
alpoint of view, A is the generator of a evolution linear group in X, while

Q(t, ·) is a nonlinear integral operator.In many situations, we 
an write Q(t, ·) = Q+(t, ·)−Q−(t, ·), where Q+(t, ·)and Q−(t, ·) are positive and isotone with respe
t to the order of X. More-over, Q+(t, ·) and Q−(t, ·) satisfy 
ertain relations -ma
ros
opi
 balan
e laws-determined by the mi
ros
opi
 balan
e properties.In this work we are interested in solving the initial value problem (i.v.p.) forEq.(2.1), whi
h 
an take various formulations, depending on the model.2.1. Smolu
howski's 
oagulation equationSmolu
howski's 
oagulation equation, [21, 25℄ (see also, e.g., [1℄, for a re
entreview), des
ribes the irreversible evolution of parti
les that may 
oales
einto larger 
lusters. The 
ontinuous version of the Smolu
howski's equationreads
∂

∂t
f = Qc(f) = Q+

c (f) −Q−
c (f) (2.2)
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ity Methods 49for the unknown f(t, y) ≥ 0, the density of 
lusters of size y ∈ R+ := [0,∞)at time t ≥ 0. Here
Q+

c (g)(y) =
1

2

∫ y

0
q(y − y∗, y∗)g(y − y∗)g(y∗)dy∗, (2.3)

Q−
c (g)(y) = g(y)

∫ ∞

0
q(y, y∗)g(y∗)dy∗, (2.4)with the (
oagulation) kernel q : R+ × R+ 7→ R+ a symmetri
, measurablefun
tion.We assume that there exist the 
onstants q0, q1 ≥ 0 and 0 ≤ α ≤ β, su
hthat

q(y, y∗) ≤ q0 + q1(y
αyβ

∗ + yβyα
∗ ) (y, y∗ ≥ 0), (2.5)where

α+ β ≤ 1. (2.6)Condition (2.5) in
ludes the 
ase when either q0 = 0 or q1 = 0. Withoutloss of generality, we 
an assume that q1 > 0 (indeed the situation when qis bounded by a 
onstant 
an be 
onsidered as a parti
ularization of (2.5) tothe 
ase where q1 > 0 and α = β = 0).The following property of the Smolu
howski's model is essential for our anal-ysis. Formally, if g, ψ : R+ 7→ R are measurable, then
∫ ∞

0
ψ(y)

[
Q+

c (g)(y) −Q−
c (g)(y)

]
dy =

=
1

2

∫ ∞

0

∫ ∞

0
ψ̃(y, y∗)q(y, y∗)g(y)g(y∗)dydy∗, (2.7)(provided that the integrals exist), where

ψ̃(y, y∗) := ψ(y + y∗) − ψ(y) − ψ(y∗). (2.8)Property (2.7) follows from the 
hange of variables (y, y∗) → (y − y∗, y∗) inthe �rst term of the l.h.s. of (2.7), and then applying Fubini's theorem.In parti
ular, if ψ(y) = y in (2.7), then
∫ ∞

0
Qc(g)(y)ydy = 0. (2.9)This gives formally the mass 
onservation for Eq. (2.2).
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il Pompiliu GrünfeldSimilar 
onsiderations as before 
an be made for the dis
rete version of theSmolu
howski equation
ċj =

1

2

j−1∑

k=1

Qj−k,k(c(t)) −
∞∑

k=1

Qj,k(c(t)), cj(0) = cj,0 ≥ 0 (j = 1, 2, ...),(2.10)where Qj,k(c) := q(k, j)ckcj , is de�ned by the same symmetri
 
oagulationkernel introdu
ed before, subje
t to (2.5), (2.6), and the 
omponent cj(t) ≥ 0of c(t) := (cj(t)) is interpreted as the 
on
entration of 
lusters of size j attime t ≥ 0.2.2. Povzner-like model with dissipative 
ollisionsThe model des
ribes a rare�ed mono-
omponent �uid of parti
les of unitmass, evolving in the free spa
e with dissipative (
onservative) binary 
olli-sions, i.e., 
ollisions resulting in the loss (
onservation) of the kineti
 energyof the en
ounters.A

ording to the model, [7℄, the post-
ollision velo
ities v′, w′ are related tothe pre-
ollision velo
ities v and w by
v

′
= v− (1− β(n))〈v − w,n〉n, w

′
= w + (1− β(n))〈v−w,n〉n, (2.11)where 〈·, ·〉 is the Eu
lidean produ
t in R

3 and n ∈ Ω - the unit sphere in R
3.Here, β : Ω 7→ [0, 1/2) is a given measurable fun
tion. The total momentumis 
onserved in 
ollisions, v′ + w′ = v + w, but the kineti
 energy is lost

∣∣v′
∣∣2 +

∣∣w′
∣∣2 = |v|2 + |w|2 − 2β(n)(1 − β(n)) |〈v − w,n〉|2 , (2.12)ex
epting the 
ase β = 0, when the 
ollisions be
ome elasti
.For ea
h �xed n ∈ Ω, the transformation R

3 × R
3 ∋ (v, w) 7→ (v′,w′) ∈

R
3 × R

3 is invertible. The inversion formulae are
v̂ = v −

(
1 − β(n)

1 − 2β(n)

)
〈v − w,n〉n, ŵ = w +

(
1 − β(n)

1 − 2β(n)

)
〈v − w,n〉n.(2.13)Formally the above model reads

∂

∂t
f = −v · ∇xf +Q+

d (f) −Q−
d (f) (2.14)where f = f(t,x,v) is the one-parti
le distribution fun
tion, depending ontime t ≥ 0, position x ∈R

3, and velo
ity v ∈R
3 of the so-
alled test parti
le,
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Q+

d and Q−
d are the so-
alled nonlinear gain and loss operators, respe
tively,and des
ribe the in�uen
e of the 
ollisions on the evolution of f . They areformally given by

Q+
d (g)(x,v) =

=

∫ R

0
dr

∫

Ω×R3

|〈n,v − w〉|γ

(1 − 2β(n))1+γ P (r,n)g(x, v̂)g(x + rn, ŵ)dndw (2.15)and
Q−

d (g)(x,v) = g(x,v)

∫ R

0
dr

∫

Ω×R3

|〈n,v −w〉|γ P (r,n)g(x + rn,w)dndw,(2.16)respe
tively, where P : R+ × Ω 7→ R+ is a given measurable fun
tion with
P (r,n) = P (r,−n) assumed to satisfy

P (r,n) ≤ c0r
2 (r ≥ 0, n ∈Ω), (2.17)for some 
onstants c0 > 0, 0 ≤ γ ≤ 1, and R > 0, spe
i�
 to the 
ollisionpro
esses.The basi
 property of the model is the formal identity

∫

R3

ψ(v)
[
Q+

d (g) −Q−
d (g)

]
dv =

=

∫

Ω×R3×R3

ψ̃(v,w,v′,w′)
|〈n,w − v〉|γ

2
P (r,n)g(x,v)g(x + rn,w)dndvdw,(2.18)where ψ : R

3 7→ R and g : R
3 × R

3 7→ R are measurable fun
tions su
h that(2.18) is well de�ned, and
ψ̃(v,w,v′,w′) := ψ(v′) + ψ(w′) − ψ(v) − ψ(w), (2.19)with v′ and w′ given by (2.11). We dedu
e easily (2.18), performing the
hange of variable (v,w) → (v̂, ŵ) in the �rst term of the l.h.s (2.18).If β ≡ 0, then (2.14) yields a version of the so-
alled generalized Boltzmannequation with binary elasti
 (
onservative) 
ollisions, analyzed in [3℄.2.3. Povzner-like model with 
hemi
al rea
tionsWe re
all here a Povzner-like model with 
hemi
al rea
tions introdu
ed in [8℄for a rea
ting gas mixture of N spe
ies Ai and mass mi, 1 ≤ i ≤ N , withoutintera
tion with photon �elds. We assume binary rea
tions

Ai +Aj → Ak +Al, 1 ≤ i, j, k, l ≤ N, (2.20)
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il Pompiliu Grünfeldwhere 
ase i = j = k = l 
orresponds to non-rea
tive (elasti
) pro
esses.A

ording to the model of [8℄, for ea
h spe
ies i, the gas parti
les have oneinternal energy state, say Ei ≥ 0, 1 ≤ i ≤ N . It is assumed that the rea
tionsare 
onsistent with the 
onservation of mass, momentum and total energy,i.e., mi +mj = mk +ml, and miv +mjw = mkv
′ +mlw

′, as well as
mi |v|2

2
+ Ei +

mj |w|2
2

+ Ej =
mk |v′|2

2
+ Ek +

ml |w′|2
2

+ El, (2.21)where (v,w) are the pre-rea
tion velo
ities of the parti
les (i, j) and (v′,w′)are the post-rea
tion velo
ities of the parti
les (k, l)The 
onservation relations give
mkml |v′ −w′|2

2(mk +ml)
=
mimj |v − w|2

2(mi +mj)
+Ei+Ej−Ek−El := tkl,ij(v,w) (2.22)and obviously, (2.20) o

urs, provided that

tkl,ij(v,w) ≥ 0. (2.23)It 
an be easily seen that (v′,w′) 
an be represented in terms of the pre-rea
tion velo
ities (v, w) and of the unit ve
tor n = (v′ −w′) |v′ − w′|−1as
v′ =

miv +mjw

mi +mj
+

21/2(ml)
1/2

m
1/2
k (mi +mj)1/2

tkl,ij(v,w)1/2n := vkl,ij(v,w,n)(2.24)and
w′ =

miv +mjw

mi +mj
− 21/2(mk)

1/2

m
1/2
l (mi +mj)1/2

tkl,ij(v,w)1/2n := wkl,ij(v,w,n)(2.25)It is 
onvenient to extend the de�nitions of vkl,ij(v,w,n) and wkl,ij(v,w,n)by setting
vkl,ij(v,w,n) = wkl,ij(v,w,n) =

miv +mjw

mi +mj
(2.26)whenever tkl,ij(v,w) < 0. By virtue of the above formulae one has

vkl,ij(v,w,n) = vkl,ji(w,v,n) = wlk,ij(v,w, −n) (2.27)and
wkl,ij(v,w,n) = wkl,ji(w,v,n) = vlk,ij(v,w, −n). (2.28)
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h spe
ies 1 ≤ i ≤ N is des
ribed by the one-parti
le distribution fun
tion
fi = fi(t,x,v) depending on time t ≥ 0, position x and velo
ity v.Assuming mole
ular 
haos and (instant) point lo
alized rea
tions, the kineti
model is derived following the original argument for the 
lassi
al Boltzmannequation. The obtained model reads, [8℄,

∂

∂t
fi = −v · ∇xfi +Q+

i (f) −Q−
i (f), 1 ≤ i ≤ N, (2.29)where f = (f1, ..., fN ) and, formally,

Q+
i (g)(x,v) =

=

N∑

j,k,l=1

∫

R3×R3×S2

pkl,ij(y,v,w,n)gk(t,x,vkl,ij)gl(t,x + y,wkl,ij)dydwdn,(2.30)
Q−

i (g)(x,v) =

=

N∑

j,k,l=1

∫

R3×R3×Ω
rkl,ij(y, v,w,n)gi(t,x,v)gj(t,x + y,w)dydwdn. (2.31)Here, g := (g1, ...gN ) with gi : R

3 × R
3 → R+, Ω := {n ∈ R

3 : |n| =
1}, gk(·, ·,vkl,ij) = gk(·, ·,vkl,ij(v,w), gl(·, ·,wkl,ij) = gl(·, ·,wkl,ij(v,w,n)).Moreover, pkl,ij, rkl,ij : R

3×R
3×R

3×Ω → [0,∞), are given measurable mapswith the property that if (v,w) /∈ Dij,kl := {(v,w) ∈ R
3 ×R

3 : tij,kl(v,w) ≥
0}, then

pkl,ij(y,v,w,n) = rkl,ij(y,v,w,n) = 0. (2.32)One assumes that the following properties are satis�ed a.e.:
pkl,ij(y,v,w,n) = rkl,ij(y,v,w,n) = 0 (y > R), (2.33)

pkl,ij(y,v,w,n) = pkl,ij(−y,v,w,n),

rkl,ij(y,v,w,n) = rkl,ij(−y,v,w,n), (2.34)
pkl,ij(y,v,w,n) = pkl,ji(y,w,v,n) = plk,ij(y,v,w,−n), (2.35)
rkl,ij(y,v,w,n) = rkl,ji(y,w,v,n) = rlk,ij(y,v,w,−n). (2.36)Moreover,
∫

R3×R3×Ω
ϕ(v,w)pkl,ij(y,v,w,n)ψ(vkl,ij ,wkl,ij)dvdwdn =
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=

∫

R3×R3×Ω
ϕ(vij,kl,wij,kl)rij,kl(y,v,w,n)ψ(v,w)dvdwdn (2.37)for all (ψ,ϕ) : R

3×R
3 → R, provided that whi
hever side of (2.37) is de�ned.The kernels pkl,ij, rkl,ij : R

3 × R
3 × Ω → [0,∞) 
arry the information of therea
tion pro
esses. For a gas 
omposed by one spe
ies of parti
les with elasti

ollisions, the above system of equations redu
es to the so-
alled generalizedBoltzmann equation.Our main hypothesis is as follows:Assumption 2.1 There exist 
onstants cq > 0 and 0 ≤ q ≤ 1 su
h that

∫

Ω
rkl,ij(y,v,w,n)dn ≤ cq

[
1 + |v|2 + |w|2

]q
. (2.38)Observe that sin
e rkl,ij and pkl,ij are related by (2.37), then the abovehypothesis is also an impli
it 
ondition on pkl,ij.Under Assumption (2.38), one 
an show that, at least, formally,

N∑

i=1

∫

R3×R3

[Q+
i (g)(x,v) −Q−

i (g)(x,v)]hi(x,v)dvdx =

=
1

4

N∑

i,j,k,l=1

∫

D
[pkl,ij(y,v,w,n)gk(x,vkl,ij)gl(x + y,wkl,ij)

−rkl,ij(y,v,w,n)gi(x,v)gj(x + y,w)]

×[hi(x,v) + hj(x + y,w) − hk(x,vkl,ij) − hl(x + y,wkl,ij)]dxdydvdwdn(2.39)for all g=(g1, ...gN ) and h=(h1, ...hN ), with gi, hi ≥ 0, for whi
h the integralsare de�ned. Here, D := R
3 × R

3 × R
3 × R

3 × Ω. The last property followsby applying (2.27), (2.28), (2.32)�(2.37), as well as the invarian
e propertiesof the sums in (2.39), with respe
t to the 
hange of variables (x,y,n) →
(x′,y′,n′) := (x + y,−y,−n), and a suitable inter
hanges of summationindi
es.At least, at formal level, property (2.39) implies the bulk 
onservation formass, momentum, and total energy,

N∑

i=1

∫

R3×R3

Ψ
(j)
i (x,v)fi(t,x,v)dxdv =

N∑

i=1

∫

R3×R3

Ψ
(j)
i (x,v)fi(0,x,v)dxdv(2.40)
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ity Methods 55(0 ≤ j ≤ 4), where fi(t) are the 
omponents of the solution f of Eq. (2.29),and
Ψ

(0)
i (x,v) := mi, Ψ

(4)
i (x,v) := mi |v|2 /2 + Ei, Ψ

(j)
i (x,v) := mivj(2.41)(j = 1, 2, 3), with vj are the 
omponents of v.2.4. A model with inelasti
 
ollisions and 
hemi
al rea
tionsIn this example, we 
onsider an abstra
t system of a Boltzmann-like phe-nomenologi
al equations, [9, 10, 14℄, for a multi-
omponent rea
ting gasof parti
les with internal states and dis
rete values of the internal energy.Thinking a real gas mixture of parti
les with internal stru
ture as a mixtureof several 
hemi
al spe
ies of mass points with unique internal state, one 
anassume that any gas parti
le of the model has only one internal state. Spe
if-i
ally, the model refers to a gas 
onsisting of N 
hemi
al spe
ies. A parti
leof spe
ies n = 1, 2, ..., N is 
hara
terized by mass mn > 0 and internal energy

En. Without loss of generality, one 
an assume that En ≥ 0, 1 ≤ n ≤ N .It is assumed that the 
hemi
al rea
tions are indu
ed by inelasti
 (possibly)multi-body, instant 
ollisions. A rea
tion is identi�ed with a 
ouple (α, β) ∈
M×M, where M := {γ = (γn)1≤n≤N | γn ∈ {0, 1, . . . ,K}} is a multi-indexset. Here α = (α1, . . . , αN ) ∈ M and β = (β1, . . . , βN ) ∈ M designate thepre-
ollision and post-
ollision 
hannels, respe
tively, with 0 ≤ αn, βn ≤ Kparti
ipants of spe
ies n; 1 ≤ n ≤ N . Any 
ouple of the form (γ, γ) ∈ M×Mis identi�ed with a multi-body elasti
 
ollision with γn 
ollision partners ofspe
ies n; 1 ≤ n ≤ N . The number of parti
les in some 
hannel γ ∈ M is
|γ| :=

∑N
i=1 γi. The family of 
hemi
al spe
ies parti
ipating in 
hannel γ isdenoted by N (γ) := {i : γi > 0, 1 ≤ i ≤ N}.LetMγ , Vγ(w) andWγ(w) denote the total mass, velo
ity of the mass 
enterand total energy, respe
tively, for the parti
les in 
hannel γ, i.e.,

Mγ :=

N∑

i=1

γimi, (2.42)
Vγ(w) :=

1

Mγ

∑

i∈N (γ)

γi∑

j=1

miwi,j, (2.43)
Wγ(w) :=

∑

i∈N (γ)

γi∑

j=1

(2−1miw
2
i,j + Ei), (2.44)
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il Pompiliu Grünfeldwhere w = ((wk,i)i∈{1,...,αk})k∈N (γ) represents the ensemble of velo
ities ofthe parti
les in 
hannel γ. Then, the kineti
 energy of the parti
les (withvelo
ities w) in 
hannel γ, relative to the frame of the mass 
enter, reads
Wr,γ(w) = Wγ(w) − MγVγ(w)2

2
−

N∑

i=1

γiEi. (2.45)Obviously, Wr,γ(w) ≥ 0.A gas rea
tion (α, β) may take pla
e only if it is 
onsistent with the 
onser-vation of mass, momentum and energy, i.e.,
Mα = Mβ , Vα(w) = Vβ(u), Wα(w) = Wβ(u). (2.46)We will assume here that elasti
 
ollisions are always present. Therefore, theset CM := {(α, β) ∈ M×M : Mα = Mβ} is nonempty.The Boltzmann-like system of equations for the above model is

∂

∂t
fi = Q+

i (f) −Q−
i (f). (2.47)Here the unknown fi : R+ × R

3 7→ R+ is the one parti
le distribution fun
-tions fi = fi(t,v) (t-time, v-velo
ity) of the parti
les of spe
ies 1 ≤ i ≤ N .In Eq. (2.47), Q+
i (f) and Q−

i (f), with f := (f1, . . . , fN ), are the so-
alledloss and gain (nonlinear) operators for the parti
les of spe
ies i, respe
tively.Formally,
Q+

i (g)(v) =
∑

α,β∈M

αi

∫

R3|α|−3×Ωβ

[
pβ,α(w,n)(gβ ◦ uβ,α)(w,n)

]
wi,αi

=v

dw̃idn,(2.48)
Q−

i (g)(v) =
∑

α,β∈M

αi

∫

R3|α|−3×Ωβ

[rβ,α(w,n)gα(w)]
wi,αi

=v
dw̃idn, (2.49)where

gγ(w) :=
∏

i∈N (γ)

γi∏

j=1

gi(wi,j), γ ∈ M, (2.50)
Ωγ is the unit sphere in R

3|γ|−3, with γ ∈ M, and dw̃i is the Eu
lidean ele-ment of area on {
w ∈R

3|α| | wi,αi
= v

}. Here, the fun
tions uβ,α ∈ C(R3|α|×
Ωβ; R3|β|), and the measurable fun
tions rβ,α, pβ,α : R

3|α| × Ωβ 7→ R+ aregiven.
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ity Methods 57The following 
onditions are assumed ([9, 11, 14℄):(B1) rβ,α = pβ,α = 0 unless: |α| ≥ 2 , |β| ≥ 2, (α, β) ∈ CM , and w ∈ D+
β,α :={

w′ ∈ R
3|α| : Wr,α(w′) +

N∑
i=1

(αi − βi)Ei ≥ 0

}.(B2) For ea
h i ∈ N (α) �xed, pβ,α(w,n), rβ,α(w,n), and uβ,α(w) are in-variant with respe
t to the inter
hange of the 
omponents wi,1, ...,wi,αi
of

w.(B3) If (α, β) ∈ CM , w ∈ D+
β,α, then

(Vβ ◦ uβ,α)(w,n) = Vα(w), (Wβ ◦ uβ,α)(w,n) = Wα(w), (2.51)for all n ∈ Ωβ, and
∫

R3|α|×Ωβ

pβ,α(w,n)ϕ(w,n)(ψ ◦ uβ,α)(w,n)dwdn =

=

∫

R3|β|×Ωα

rα,β(w,n)(ϕ ◦ uα,β)(w,n)ψ(w,n)dwdn, (2.52)for all ϕ : R3|α| 7→ R and ψ : R3|β| 7→ R, for whi
h the integrals are wellde�ned.We suppose that the rea
tions are reversible, i.e., if rβ,α 6= 0 for some (α, β),then also rα,β 6= 0.From (3.9), it follows that pβ,α and rβ,α are related one to another. Indeed, amore expli
it relationship between pβ,α and rβ,α 
an be derived, as it resultsfrom a general example 
onstru
ted in [9, 14℄. Note also here that if oneassumes a mono-
omponent gas of parti
les with binary elasti
 
ollisions(i.e., N = 1, K = 2, and pβ,α = rβ,α = 0 unless α = β = (1, 1)), then Eq.(2.47) redu
es to the spa
e homogeneous 
lassi
al Boltzmann equation
∂

∂t
f = Q+(f) −Q−(f), (2.53)where

Q+(f)(v) =

∫

R3×Ω

q(v,w,n)f(v′)f(w′)dwdn, (2.54)
Q−(f)(v) =

∫

R3×Ω

q(v,w,n)f(v)f(w)dwdn. (2.55)
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il Pompiliu GrünfeldThe notations are f = f(t,v) � the one-parti
le distribution fun
tion, v′ =
v − 〈v − w,n〉n, w

′
= w + 〈v − w,n〉n, and n ∈ Ω � the unit sphere in

R
3. Here, the Boltzmann 
ollision law q is a positive measurable fun
tion(depending, in our 
ase, on v and w through the variable v − w).The last 
ondition of the model 
on
erns the behavior of rβ,α (see [9℄):Assumption 2.2 There are some 
onstants 0 ≤ q ≤ 1 and cq > 0 su
h that
νβ,α(w) :=

∫

Ωβ

rβ,α(w,n)dn ≤ cq(1 +Wα(w))q (w ∈ R
|α|, a.e.), (2.56)for all α, β ∈ M.Obviously, νβ,α(w) = 0, unless (α, β) ∈ CM .A 
onsequen
e of (B1), (B2) and (2.56) is the key equality

N∑

i=1

∫

R3

Ψ
(j)
i (v)

[
Q+

i (g)(v) −Q−
i (g)(v)

]
dv = 0 (0 ≤ j ≤ 4), (2.57)for all g = (g1, ..., gN ) with (1+ |v|2)1+qgi ∈ L1(R3; dv), i = 1, 2, ...,N . Here,

Ψ
(0)
i (v) := mi, Ψ

(4)
i (v) :=

1

2
mi |v|2 +Ei, Ψ

(j)
i (v) := mivj (1 ≤ i ≤ N),(2.58)where vj is the j-
omponent, j = 1, 2, 3, of v. Equality (2.57) implies, at lestformally, the bulk 
onservation of mass, momentum and total energy.2.5. A nonlinear von Neumann-Boltzmann equationBesides 
lassi
al models, we 
an also 
onsider "quantum" kineti
 models withmonotoni
ity properties similar to 
lassi
al ones.Let X = T (H) be the spa
e of tra
e 
lass selfadjoint operators in someseparable Hilbert spa
e H. On X, we 
onsider the order F ≤ G i� (f, Ff) ≤

(f,Gf), ∀f ∈ D(F ) ∩ D(G). Let ‖F‖ := Tr(|F |) be the norm on X.For some orthogonal base {e0, e1, ...} ⊂ H, de�ne the selfadjoint operator
H =

∑

i≥0

µi(ei, ·)ei, (2.59)
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ity Methods 59where {µn}n ⊂ R. Let {U t}t∈R denote the 
ontinuous group of positiveisometries on X, given by U t(F ) := exp(−iHt)F exp(iHt), i =
√
−1. Con-sider a se
ond sequen
e, 0 ≤ λ0 < λ1 < λ2 ≤ ... λn−1 ≤ λn ... ր ∞, as

n→ ∞. Let {
V t

}
t≥0

be the C0 semigroup on X, de�ned by
(ei, V

t(F )ej) := (V t(F ))i,j = exp[−(1 + λiδi,j)t]Fi,j (2.60)where Fi,j := (ei, Fej), and let the in�nitesimal generator of {
V t

}
t≥0

bedenoted by (−Λ). Then
(Λ)i,j(F ) := (1 + λiδi,j)Fi,j , (2.61)hen
e Λ ≥ I. Clearly, U t leaves D(Λ) ∩ X+ invariant and U tΛ = ΛU t on

D(Λ) ∩X+.Now we 
an 
onsider the following example of nonlinear von Neumann-Boltzmann equation X (see also [12℄):
dF

dt
+ i[H,F ] = Q+(F ) −Q−(F ) (2.62)with Q± : D(Λ) ⊂ X → X given by

Q−(F ) := F0,0Tr(ΛF )(

2∑

i=0

Pi), (2.63)and
Q+(F ) := Q−(F ) + L(F ), (2.64)where Pi := (ei, ·)ei and

L(F ) := F0,0Tr(ΛF )(

2∑

i=0

εiPi). (2.65)Here, ε0 = ε (λ1 − λ0)
−1 (λ2 − λ0)

−1, ε1 = −ε(λ1 − λ0)
−1 (λ2 − λ1)

−1, ε2 =
ε(λ2 − λ0)

−1 (λ2 − λ1)
−1 and 0 < ε < (λ0 − λ1) (λ0 − λ2). Thus Q± arepositive operators, and a simple 
omputation gives

TrQ+(F ) = TrQ−(F ) (2.66)for 0 ≤ F ∈ D(Λ), and
Tr(ΛQ+)(F ) = Tr(ΛQ−)(F ) (2.67)for 0 ≤ F ∈ D(Λ2), so that both TrF (t) and Tr(ΛF )(t) remain 
onstant withtime.
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il Pompiliu Grünfeld3. General theory3.1. A monotoni
ity result for the 
lassi
al Boltzmann equa-tionBefore pro
eeding to a more general analysis, we start with a relevant exam-ple - the Arkeryd's monotoni
ity result for the Boltzmann equation ([2℄).Spe
i�
ally, in [2℄, the main interest is to solve the Cau
hy problem for thespa
e homogeneous Boltzmann equation (2.47) in the positive 
one L1
+ of

L1 = L1(R3,dv), namely
d

dt
f = Q(f) ≡ Q+(f) −Q−(f), f(0) = f0 ≥ 0 (t ≥ 0) (3.1)with Q± de�ned by (2.54) and (2.55), respe
tively.The basi
 hypothesis is that the 
ollision kernel q satis�es
q(v,w,n) ≤ Cq(1 + |v|λ + |w|λ) (0 ≤ λ ≤ 2), (3.2)for some 
onstant Cq > 0. The initial data f0 is supposed to satisfy (at least)the 
ondition of �nite mass and energy, i.e. ‖f0‖2 <∞, where

‖g‖l :=

∫
(1 + |v|2) l

2 |g(v)| dv. (3.3)Unfortunately, under 
ondition (3.2), the operators Q± are too singular toallow for applying general methods to the above problem. The idea of [2℄is to approximate Q± by 
ollision-like operators Q±
m with bounded (hen
esimpler) kernels qm(v,w) := min{q(v,w),m}, m = 1, 2, ... .Thus one starts by solving the simple model

d

dt
f = Qm(f) ≡ Q+

m(f) −Q−
m(f), f(0) = f0 (t ≥ 0). (3.4)Note that, sin
e (3.4) is a Boltzmann-type equation, then for "many" g ∈ L1,

∫
ϕi(v)Qm(g)dv = 0, (3.5)where ϕ0(v) = 1, ϕi(v) = vi , i = 1, 2, 3, ϕ4(v) = |v|2. An immediate
onsequen
e is that for any solution f = f(t,v) of (3.4),

‖f(t)‖0 = ‖f0‖0 (t ≥ 0). (3.6)
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ity Methods 61Moreover, if also ‖f(t)‖2 <∞, then
‖f(t)‖2 = ‖f0‖2 . (3.7)Writing the solution of (3.4) as fm, one 
ould hope that if m → ∞, then

fm 
onverges somehow to a solution of the original problem (3.1). Anotherkey point in the analysis is to use the above equalities as a priori estimatesin order to repla
e (3.4) with other (somehow equivalent) equations, moresuitable for monotone iteration with respe
t to the natural order of L1.Thus, one 
an �rst prove the following result ([2℄).Proposition 3.1 There exists a unique non-negative solution fm(t,v) ∈ L1of (3.4) for every 0 ≤ f0 ∈ L1.Proof. By (3.6), the positive solutions (in L1) of (3.4) are exa
tly the positivesolutions of the equation
d

dt
f + C ‖f0‖0 f = Qm(f) + C ‖f(t)‖0 f, f(0) = f0 (t ≥ 0), (3.8)whi
h satisfy equality (3.6). Here C > 0 is some 
onstant. Let v(t) :=

exp(−C ‖f0‖0 t). Sin
e the operators Q±
m are lo
ally Lips
hitz in L1, (3.8)has a unique lo
al solution fm(t), whi
h is also a unique lo
al solution to themild equation

f(t) = v(t)f0 +

∫ t

0
v(t− s)[Qm(f)(s) + C ‖f(s)‖0 f(s)]ds. (3.9)De�ne the sequen
e {fn

m}n by
f1

m = 0, fn
m = v(t)f0 +

∫ t

0
v(t− s)[Qm(fn

m)(s) + C ‖fn
m(s)‖0 f

n
m(s)]ds.(3.10)If C is su�
iently large, then the operator X ∋ g → Qm(g) + C ‖g‖0 g ∈ Xis positive. Then the sequen
e {fn

m(t)}n is positive and in
reasing in L1. Asimple indu
tion, making use of (3.5), gives ‖fn
m(t)‖0 ≤ ‖f0‖0. Then bythe monotone 
ompleteness of L1 (Levi's theorem) {fn

m(t)}n is 
onvergent,its limit gm(t) satis�es (3.9), and ‖gm(t)‖0 ≤ ‖f0‖0. But by virtue of theuniqueness of the aforementioned lo
al solution fm(t) (of both (3.8) and(3.9)), 
learly gm(t) = fm(t) ≥ 0 for t small enough. Moreover, gm(t) extends
fm(t), as the unique solution of (3.8), for all t ≥ 0. It remains to show that
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il Pompiliu Grünfeldthis solution satis�es (3.6). To this end, one integrates (3.8), with fm assolution, and rearrange 
onveniently the resulting expression as
fm +

∫ t

0
[Q−

m(fm)(s) + C ‖f0‖0 fm(s)]ds =

= f0 +

∫ t

0
[Q+

m(fm)(s) + C ‖fm(s)‖0 fm(s)]ds. (3.11)As fm(t), Q±
m(fm)(t) ≥ 0, invoking the additivity of the L1 norm, and theproperty ‖fm(t)‖0 ≤ ‖f0‖0, one �nally obtains

0 ≤ ‖f0‖0 − ‖fm(t)‖0 ≤ C ‖f0‖0

∫ t

0
(‖f0‖0 − ‖fm(s)‖0)ds. (3.12)Thus by Gronwall's inequality,

‖fm(t)‖0 = ‖f0‖0 , (t ≥ 0) (3.13)so the proof is 
on
luded. 2An indu
tion involving (3.10), and making use of (3.5) also shows ([2℄) thatif fm is as in Prop. 3.1, and (1 + |v|2)f0 ∈ L1, then (1 + |v|2)fm ∈ L1, and
‖fm(t)‖2 = ‖f0‖2 (t ≥ 0). (3.14)Another important property is the following estimation, uniform with respe
tto m (see [2℄): for any t∗ > 0,

‖fm(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗), l ≥ 4, (3.15)for some number 0 < K = K(t∗, ‖f0‖2 , Cq, l). The proof (see the slightlymore general Prop. 1.3 of [2℄) is indu
tive, and applies (3.10) and the basi
inequality ∫

R3

(1 + |v|2) l
2Qm(fm)dv ≤

≤ 3

2
Cqβl[‖fm(t)‖l+λ−θ ‖fm(t)‖θ + ‖fm(t)‖l−θ ‖fm(t)‖λ+θ , (3.16)valid for some βl > 0 and for any 0 ≤ θ ≤ 2. Inequality (3.16) follows (see,e.g., [2℄) from an elementary inequality due to Povzner, [23℄, and will be also
alled Povzner inequality2.One 
an prove that fm 
onverges to a solution of (3.1), under a stronger
ondition on f0 than in Prop. 3.1. Indeed, one has ([2℄)2Povzner-like inequalities 
an be also proved for the models presented in theprevious se
tions.
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ity Methods 63Proposition 3.2 If ‖f0‖l < ∞ for some l ≥ 4, then there exists a uniquesolution f ≥ 0 of problem (3.1) su
h that (1 + |v|l)f(t) ∈ L1. Moreover,
‖f(t)‖2 = ‖f0‖2 ( t ≥ 0), and for any t∗ > 0, there is some number K =
K(t∗, ‖f0‖2 , l) su
h that ‖f(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗).Proof. Consider the equation,

d

dt
f + hf = Qa

m(f), f(0) = f0 (t ≥ 0), (3.17)where h(v) := C(1 + |v|2) ‖f0(v)‖2 and Qa
m(f) := Qm + hf .If fm is as in Prop. 3.1, but f0 is as in Prop. 3.2, then fm is also the uniquepositive solution of Eq. (3.17), whi
h satis�es (3.14). Further, 
onsider

d

dt
f + hf = Qb

m(f), f(0) = f0 (t ≥ 0), (3.18)where Qb
m(f) := Q+

m(f) −Q−(f) + hf .Let V (t) := exp(−th). One 
an introdu
e re
urren
es similar to (3.10),
f̃1,i

m = 0, f̃n+1,i
m = V (t)f0 +

∫ t

0
V (t− s)Qi

m(f̃n,i
m )(s)ds (n ≥ 1); i = a, b.(3.19)Under 
ondition (3.2), if C > 0 is su�
iently large, the operators Qi

m arepositive and isotone so that the sequen
es {
f̃m

n,i
(t)

}
n
are positive and in-
reasing (i = a, b). Moreover, if 0 ≤ (1 + |v|2)g ∈ L1, then Qa

m (g) ≥ Qb
m(g)and Qb

m (g) ≥ Qb
j(g) for all m, 0 ≤ j ≤ m. Using the above properties, one�nds by indu
tion that

0 ≤ f̃j
n,b

(t) ≤ f̃m
n,b

(t) ≤ f̃n,a
m (t) ≤ fm(t); 0 ≤ j ≤ m. (3.20)Hen
e, the in
reasing sequen
es {
f̃m

n,i
(t)

}
n
are 
onvergent. Note that ifwe set f b

m(t) := limn→∞ f̃m
n,b

(t), then 0 ≤ f b
j (t) ≤ f b

m(t) ≤ fm(t); 0 ≤
j ≤ m. Then {

f b
m(t)

}
n
is in
reasing and ∥∥f b

m(t)
∥∥

2
≤ ‖f0‖2, hen
e {

f b
m(t)

}
n
onverges to some limit f(t), as m→ ∞, and

‖f(t)‖2 ≤ ‖f0‖2 . (3.21)Moreover,
d

dt
f + hf = Q(f) + hf (3.22)
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il Pompiliu Grünfeldand, by (3.15),
‖f(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗), l ≥ 4. (3.23)Thus f is a solution of (3.1) if there is equality in (3.21). This 
an be provedby estimating sm := fm − f b

m(t). Indeed, as fm is the solution of (3.17),(3.18), one 
an write
d

dt
sm + hsm = Qa

m(fm) −Qb
m(f b

m). (3.24)A short 
omputation, whi
h takes advantage that sm is non-negative, andapplies (3.23), gives (under hypothesis (3.2))
‖sm(t)‖2 ≤ tCK ‖f0‖4 sup

0≤s≤t∗

‖sm(s)‖2 + o(1) (3.25)as m→ ∞ (with C > 0 su�
iently large, and K, t∗ as in (3.23)).Then for t su�
iently small, ‖sm(t)‖2 → 0 as m → ∞, hen
e ‖f(t)‖2 =
limm→∞

∥∥f b
m(t)

∥∥
2

= limm→∞ ‖fm(t)‖2 = ‖f0‖2.To prove the uniqueness part of the proposition, observe that if g ≥ 0 satis�esEq. (3.1), and if ‖g(t)‖2 ≤ ∞, then ‖g(t)‖2 = ‖f0‖2. But g also satis�es themild form of (3.22). Then g ≥ f , by the 
onstru
tion of f . 2Variants of Arkeryd's monotoni
ity argument were su

essfully applied toother models 
lose to the 
lassi
al Boltzmann equation, [18℄, [27℄, [9℄, [7℄.Thus, developing the above line of reasoning within a more general frameworkhas be
ome a tempting task. But this is not trivial, and requires new ideas (aswill be seen in this se
tion). Indeed, for instan
e, too key issues of Arkeryd'sanalysis seem rather spe
i�
 to the model 
onsidered in [2℄: a) 
hoi
e of apriori estimates; b) 
onstru
tion of suitable regular operator approximationsof the Boltzmann 
ollision operators.3.2. An abstra
t modelWe begin with some terminology and fa
ts related to Bana
h latti
es ([17,24℄).The frame of our analysis is a separable AL-spa
e X with norm ‖·‖, order
≤, and positive 
one X+. We re
all that an (AL) spa
e, is a Bana
h latti
ewhose norm satis�es

‖g + h‖ = ‖g‖ + ‖h‖ (g, h ∈ X+). (3.26)
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ity Methods 65As X is an AL-spa
e, if h : R 7→ X+ is Bo
hner integrable, then property(3.26) gives ∥∥∥∥
∫

S
h(s)ds

∥∥∥∥ =

∫

S
‖h(s)‖ ds (3.27)for any measurable set S of R, the integral being in the sense of Lebesgue.Examples of AL-spa
es are L1-real and the real subspa
e of self-adjoint tra
e-
lass operators (with tra
e norm)3.Related to the order of X, we shall also use the standard notations (g ≥

h)⇔(h ≤ g), as well as (g < h)⇔( h > g)⇔(g ≤ h and g 6= h). AL-spa
esare monotone 
omplete, in the sense that any in
reasing (i.e., dire
ted ≤)norm-bounded family 
onverges. The norm of an AL-spa
e is order 
ontin-uous, i.e., any dire
ted ≥ �lters that 
onverges to 0 is also norm 
onvergentto 0 . A map Γ : D(Γ) ⊂ X 7→ X, with D(Γ) ∩ X+ 6= ∅, is 
alled positive(stri
tly positive) if 0 ≤ Γg for 0 ≤ g ∈ D(Γ) (if 0 < Γg for 0 < g ∈ D(Γ)).Further, Γ : D(Γ) ⊂ X 7→ X is 
alled isotone (stri
tly isotone) if Γg ≤ Γh,whenever g ≤ h (if Γg < Γh, whenever g < h), g, h ∈ D(Γ). Obviously,if Γ : D(Γ) ⊂ X 7→ X is isotone, 0 ∈ D(Γ) and 0 ≤ Γ(0), then Γ is posi-tive. We say that a subset M ⊂ X is p-saturated (positively saturated) if
M∩X+ 6= ∅, and from 0 ≤ g ≤ h ∈ M, it follows that g ∈ M. An operator
Γ : D(Γ) ⊂ X 7→ X will be 
alled o-
losed (
losed with respe
t to the or-der) if for any in
reasing sequen
e {gn} ⊂ D(Γ) su
h that {gn} is in
reasingand 
onvergent (in symbols, ր) to some g, and {Γgn} is Cau
hy, one has
g ∈ D(Γ) and limn→∞ Γgn = Γg. Clearly, any 
losed mapping is o-
losed.We re
all (see, e.g., [16℄) that if Γ : D(Γ) ⊂ X 7→ X is a 
losed linearoperator, then

Γ

∫

S

h(s)ds =

∫

S

Γh(s)ds. (3.28)for any fun
tion h Bo
hner integrable on some measurable set S ∈ R, withvalues in D(Γ), and su
h that Γh is Bo
hner integrable.We re
all that a positive C0 semigroup on X is a C0 semigroup of posi-tive linear operators on X. If {
St

}
t≥0

is a positive C0 semigroup on X,then its in�nitesimal generator G is densely de�ned and 
losed (as the in-�nitesimal generator of a C0 semigroup). Moreover, Gk is densely de�nedand 
losed, k = 2, 3, ... . Additional useful properties are 
olle
ted in thefollowing lemma.Let I denote the identity on X. Set D∞
+ (G) := ∩∞

k=1D(Gk) ∩X+.3A
tually, a

ording to Kakutani's theorem, [24℄, every AL-spa
e is isometri
allyisomorphi
 (as an ordered ve
tor spa
e) to a spa
e of type L1.
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il Pompiliu GrünfeldLemma 3.1 ([11℄)a) The sets D(Gk) ∩X+, k = 1, 2, ..., and D∞
+ (G) are dense in X+.b) Suppose that there is some number γ ≥ 0 su
h that

(G+ γI)g ≤ 0 (g ∈ D(G) ∩X+). (3.29)Then D(Gk) ∩X+, k = 1, 2, ..., and D∞
+ (G) are p-saturated. Moreover, forany h ∈ X+,

0 ≤ Sth ≤ exp(−γt)h (t ≥ 0), (3.30)and there is an in
reasing sequen
e {hn} ⊂ D∞
+ , su
h that hn ր h as n→ ∞.Motivated by the examples of the previous se
tion, it is of interest to 
onsiderthe following abstra
t i.v.p., [11℄,

df

dt
= Q(t, f) = Q+(t, f) −Q−(t, f), f(0) = f0 ∈ X+ (t > 0), (3.31)formulated in X+ (the parti
ular autonomous 
ase is not ex
luded).In Eq. (3.31), Q+ and Q− are mappings de�ned from R+×D to X, for some

D ⊂ X su
h that D ∩X+ is dense in X+.The following properties are assumed for Q±:a) For a.e. t ≥ 0, the operators Q±(t, ·) : D 7→ X are positive and isotone.b) The mappings R+ ∋ t 7→ Q±(t, g(t)) ∈ X+ are measurable for anyLebesgue measurable fun
tion g : R+ 7→ X that satis�es g(t) ∈ D ∩ X+a.e. on R+.
) For a.e. t ≥ 0, the operators Q±(t, ·) are o-
losed and their 
ommondomain D is p-saturated.We are interested in the existen
e and uniqueness of positive (i.e., in X+)strong solutions of Eq. (3.31) under additional hypotheses whi
h abstra
tfurther properties of the Boltzmann model.We re
all that a fun
tion f : R+ 7→ X is a strong solution of Eq. (3.31), if itis absolutely 
ontinuous on R+, di�erentiable a.e. on R+, satis�es Eq. (3.31)a.e. on R+, and veri�es the initial 
ondition. Equivalently, f is a strongsolution of problem (3.31) if it is solution of the integral equation
f(t) = f0 +

∫ t

0
Q(s, f(s))ds (t ≥ 0), (3.32)where the integral is in the sense of Bo
hner.
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ity Methods 67We also 
onsider the following problem related to Eq. (3.31)
df

dt
= Af +Q(t, f), f(0) = f0 ∈ X+ (t > 0), (3.33)with Q as in Eq. (3.31). Here A is the in�nitesimal generator of a C0 groupof positive linear isometries on X, whi
h 
ommutes with Λ.We are interested in the existen
e and uniqueness of mild solutions of Eq.(3.31) in X+, i.e, solutions of the integral equation

f(t) = U tf0 +

∫ t

0
U t−sQ(s, f(s))ds (t ≥ 0) (3.34)in X+, where {

U t
}

t∈R
is the C0 group of positive linear isometries on X,generated by A (the integral is in the sense of Bo
hner).As the above model is still too general for developing an existen
e theory ofsolutions, additional hypotheses are needed. The examples of the previousse
tion suggest to assume some sort of dissipation (
onservation) property,[11℄. This 
laims the existen
e of a positive, densely de�ned, 
losed linearoperator Λ : D(Λ) ⊂ X 7→ X su
h that, for any positive solution f(t) ∈

D(Λ2) of Eq. (3.31), the quantity ‖Λf(t)‖ is dissipated (
onserved), i.e., isde
reasing (
onstant) in t, and ∥∥Λ2f(t)
∥∥ is lo
ally bounded in t. The "lawof de
rease" of ‖Λf(t)‖ 
an be used as a "natural" a priori estimate4. Inparti
ular,

‖Λf(t)‖ ≤ ‖Λf0‖ (t ≥ 0). (3.35)To be pre
ise, we introdu
e the following "dissipation" property ([11℄). Let
M be a subset of D ∩X+ dense in X+.Definition 3.1 ([11℄) A 
losed positive linear operator Γ : D(Γ) ⊂ X 7→
X is 
alled of type D on M (with respe
t to Eq. (3.31)) if M ⊂D(Γ),
Q±(t,M) ⊂ D(Γ) a.e. on R+, and for any g ∈ M,

0 ≤ ∆(t, g; Γ, Q) :=
∥∥ΓQ−(t, g)

∥∥ −
∥∥ΓQ+(t, g)

∥∥ (t ≥ 0 a.e.). (3.36)If Γ is of type D on M, then the following property 
an be easily establishedby making use of (3.27) and (3.28).Lemma 3.2 ([11℄) Let g0, g(t), h(t) ∈ M, t ≥ 0 a.e., with Q±(·, h(·)),
ΓQ±(·, h(·)) ∈ L1

loc(R+;X+), and
g(t) ≤ g0 +

∫ t

0
Q(s, h(s))ds (t ≥ 0). (3.37)4This 
an take various forms in appli
ations, depending on the form of Λ and

Q, e.g., 
onservation energy, in the 
ase of the model of [2℄.
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‖Γg(t)‖ +

∫ t

0
∆(s, h(s); Γ, Q)ds ≤ ‖Γg0‖ (t ≥ 0). (3.38)Moreover, (3.38) holds with equality sign for any t ≥ 0, provided that thereis equality in (3.37) for all t ≥ 0.On the other hand, in determining the behavior of ∥∥Λ2f(t)

∥∥, a major role ap-pears to be played by the Povzner inequality (3.16). This has to be somehowin
luded in the model.Now we are in position to 
omplete the setting of Eq. (3.31) with additionalhypotheses, making more pre
ise the above 
onsiderations.Spe
i�
ally, we assume that there is a linear operator Λ : D(Λ) ⊂ X 7→ X,with D(Λ) ⊂ D and Q±(t,D(Λk)∩X+) ⊂ D(Λk−1), t ≥ 0 a.e., k = 2, 3, su
hthat:
(A0) The operator (−Λ) is the in�nitesimal generator of a C0 semigroup ofpositive linear operators on X, and there is a number λ0 > 0 su
h that

(Λ − λ0I)g ≥ 0 (g ∈ D(Λ) ∩X+). (3.39)(A1) For a.e. t ≥ 0,
∆(t, g) := ∆(t, g; Λ, Q) ≥ 0 (g ∈ D(Λ2) ∩X+), (3.40)and the map D(Λ2) ∩X+ ∋ g 7→ ∆(t, g) ∈ R+ is isotone.(A2) There exists a non-de
reasing 
onvex fun
tion a : R+ 7→ R+ su
h that

a(‖Λg‖)Λg −Q−(t, g) ≥ 0, (g ∈ D(Λ) ∩X+, t ≥ a.e.), (3.41)and for a.e. t ≥ 0, the map D(Λ) ∩X+ ∋ g 7→ a(‖Λg‖)Λg − Q−(t, g)
∈ X is isotone.(A3) There exists a non-de
reasing fun
tion ρ : R+ 7→ R+, and there is anoperator Λ1 : D(Λ1) ⊂ X 7→ X of type D on D(Λ2) ∩X+ su
h that
−∆(t, g; Λ2, Q) ≤ ρ(‖Λ1g‖)

∥∥Λ2g
∥∥ (g ∈ D(Λ3) ∩X+, t ≥ 0 a.e.).(3.42)Some remarks are in order.First, observe that if g ∈ D(Λ2) ∩X+, then by (3.39), (3.40) and (3.41) wehave the simple inequalities

‖g‖ ≤ λ−1
0 ‖Λg‖ ≤ λ−2

0

∥∥Λ2g
∥∥ (3.43)
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ity Methods 69and ∥∥Q±(t, g)
∥∥ ≤ λ−1

0

∥∥ΛQ±(t, g)
∥∥ ≤ λ−1

0

∥∥ΛQ−(t, g)
∥∥ ≤

≤ a(‖Λg‖)λ−1
0

∥∥Λ2g
∥∥ ≤ a(λ−1

0

∥∥Λ2g
∥∥)λ−1

0

∥∥Λ2g
∥∥ (t ≥ 0 a.e.), (3.44)with the following obvious 
onsequen
es.Remark 3.1 Q±(t, 0) = 0 and ∆(t, 0) = 0 a.e. on R+.Let Λ0 := I.Remark 3.2 If g : R+ 7→ X+ is measurable, with g(t) ∈ D(Λ2), t ≥

0, a.e., and ∥∥Λ2g
∥∥ ∈ L∞

loc(R+), then g, Λk+1g, and ΛkQ±(·, g(·)) are in
L1

loc(R+;X+), k = 0, 1.Lemma 3.1a) and (A0) imply that D(Λk) ∩ X+, k = 1, 2, ..., and D∞
+ :=

D∞
+ (Λ) are p-saturated and dense in X+. Obviously, (3.39) shows that Λ ispositive. Thus, by (3.40), the operator Λ is of type D on D(Λ2) ∩X+. Thishas the following important 
onsequen
e.If f(t) ∈ D(Λ2), t ≥ 0, a.e., and if Q±(·, f(·)), ΛQ±(·, f(·)) ∈ L1(R+;X+),then by (3.38), applied with equality sign,

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds = ‖Λf0‖ (t ≥ 0). (3.45)Thus ‖Λf(t)‖ is de
reasing in time and satis�es (3.35). In parti
ular, if

∆(t, g) = 0 for all g ∈ D(Λ2) ∩X+, t ≥ 0 a.e., then ‖Λf(t)‖ is 
onserved forall t ≥ 0.Observe that inequality (3.42) is of the form
−∆(t, g; Γ, Q) ≤ ρΓ(‖Λ1g‖) ‖Γg‖ (g ∈ M1, t ≥ 0 a.e.), (3.46)where Γ : D(Γ) ⊂ X 7→ X is some positive linear operator, and M1 ⊂ D(Γ)∩

D(Λ2)∩X+ is su
h that Q±(t,M1) ⊂ D(Γ), t ≥ 0 a.e., while ρΓ : R+ 7→ R+is some non-de
reasing fun
tion.Formula (3.45) generalizes a priori estimates introdu
ed in e.g., [2, 7, 8, 9, 27℄.Formula (3.46) 
an be regarded as an abstra
t 
orrespondent to the Povznerinequality, [2, 23℄.We �nally remark that the above setting does not ex
lude the 
ase Λ1 = Λwhen, obviously, some of the above 
onditions be
ome redundant.
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e of solutionsWe are now in position to state some results ([11℄, [13℄) on the existen
eof solutions to our abstra
t model. The proofs will be sket
hes in the nextsubse
tion (for more details, the reader is referred to [11℄ and [13℄). First we
onsider problem (3.31).Theorem 3.1 Let either of the following two sets of 
onditions be ful�lled:a) Q+(t,D∞
+ ) ⊂ D∞

+ , t ≥ 0 a.e., ΛkQ+(·,D∞
+ ) ⊂ L1

loc(R+;X+), k = 1, 2, ... .In problem (3.31), f0 ∈ D(Λ2) ∩X+.b) The operators Q± do not depend expli
itly on t. In problem (3.31), f0 ∈
D(Λ3) ∩X+.Then there exists a unique positive strong solution of the i.v.p. (3.31) su
hthat f(t) ∈ D(Λ2) for any t ≥ 0, and ∥∥Λ2f(·)

∥∥ is lo
ally bounded on R+.Moreover, f,Λf ∈ C(R+;X+). Furthermore, f satis�es Eq. (3.45) and
∥∥Λ2f(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0). (3.47)Note here that Theorem 3.1a) is also appli
able to the autonomous 
ase, but,
learly, its 
onditions are di�erent from those of Theorem 3.1b).Theorem 3.1 has an immediate noti
eable 
onsequen
e, as follows:Consider Eq. (4.22) and let {
U t

}
t∈R

be the C0 group of positive linearisometries on X, generated by A.If f is a solution of (3.34), then setting F (t) := U−tf(t) in (3.34), we get
F (t) = f0 +

∫ t

0
QU(s, F (s))ds (t ≥ 0), (3.48)hen
e, by di�erentiation,

d

dt
F = QU (t, F ) = Q+

U (t, F )−Q−
U (t, F ), F (0) = f0 (t ≥ 0 a.e.), (3.49)where QU (t, ·) := U−tQ(t, U t·) and Q±

U (t, ·) := U−tQ±(t, U t·).Suppose that U tD(Λ) = D(Λ) and U tΛ = ΛU t on D(Λ) for every t > 0.Also, let U tD(Λ1) = D(Λ1) and U tΛ1 = Λ1U
t on D(Λ1) for all t > 0.Now Q±

U and QU are well de�ned as maps from R+ × D(Λ) to X, the lastequation is of the form (3.31), and we 
an state the following 
onsequen
e([11℄) of Theorem 3.1a):
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ity Methods 71Corollary 3.1 Let Q+(t,D∞
+ ) ⊂ D∞

+ , t ≥ 0 a.e., and ΛkQ+(·, U ·g) ∈
L1

loc(R+;X+) for all g ∈ D∞
+ , k = 1, 2, ... . Suppose that f0 ∈ D(Λ2) ∩X+in (4.22). Then problem (4.22) has a unique positive mild solution f su
hthat f(t) ∈ D(Λ2) for any t ≥ 0 and ∥∥Λ2f(·)

∥∥ is lo
ally bounded on R+.Moreover, f,Λf ∈ C(R+;X+). Furthermore, f satis�es (3.45) and (3.47).The following result, [13℄, extends the existen
e of strong solutions of Eq.(3.31) to the 
ase of initial datum f0 ∈ D(Λ) ∩X+ (instead of D(Λ2) ∩X+,as assumed in Theorem 3.1).Theorem 3.2 Under the assumptions of Theorem 3.1a) on Λ and Q±, let
f0 ∈ D(Λ) ∩ X+ in Eq. (3.31). Then there exists a strong solution, f ∈
C([0,∞);X+), of the i.v.p. (3.31). Moreover, for any t ≥ 0, f(t) ∈ D(Λ),
‖Λf(t)‖ ≤ ‖Λf0‖, and

‖f(t)‖ = ‖f0‖ +

∫ t

0

∥∥Q+(s, f(s))
∥∥ −

∥∥Q−(s, f(s))
∥∥ ds. (3.50)Note here that if f is as in Theorem 3.2, we know only that f ∈ D(Λ)∩X+.Then ∆(t, f) and Λ2f may not be not well-de�ned. Therefore, we 
annotobtain inequalities of the form (3.45) (ex
ept the 
ase when ∆ = 0 on D(Λ2)∩

X+,) or like (3.47), at the level of abstra
tion of the theorem.Also remark that Theorem 3.2 leaves open the question on the uniqueness ofthe solution in the general 
ase (under the 
onditions of the theorem).However, uniqueness 
an be proved under additional 
onditions, [13℄.Proposition 3.3 If ∆(t, g) = 0 for all g ∈ D(Λ2) ∩X+, t � a.e., then
‖Λf(t)‖ = ‖Λf0‖ (t ≥ 0), (3.51)and there is a unique solution of the i.v.p. (3.31) as in Theorem 3.2, whi
hsatis�es (3.51).A similar result like Corollary 3.1 
an be formulated for Theorem 3.2.The following proposition yields additional useful estimates, [11℄, for the so-lutions of Eq. (3.31). For simpli
ity, we remain in the 
onditions of Theorem3.1a). However, similar results are valid when Theorem 3.1b) holds, as 
anbe seen by inspe
ting the proof of the proposition.Assume that Γ : D(Γ) ⊂ X 7→ X is a 
losed, positive linear operator. Let fbe a solution of problem (3.31), provided by Theorem 3.1a).
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il Pompiliu GrünfeldProposition 3.4 a) Suppose that Γ is of type D on D∞
+ . Then f(t) ∈ D(Γ),

t ≥ 0, and
‖Γf(t)‖ ≤ ‖Γf0‖ (t ≥ 0). (3.52)b) Suppose that Γ and ρΓ are as in (3.46), with M1 ⊇ D∞

+ . Then f(t) ∈
D(Γ), t ≥ 0, and

‖Γf(t)‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (t ≥ 0). (3.53)In appli
ations, the 
hoi
e of Λ and Λ1 may be not unique. In some 
ases,the role of Λ1 and Γ may be played by suitable powers of Λ, while, in otherexamples, Λ = Λ1 = Γ.A 
orrespondent to Prop. 3.4, appli
able to Corollary 3.1, 
an be readilyobtained. The modi�
ations in the reformulation of the proposition are ob-vious and in
lude additional hypotheses for the 
ommutation of U t with Γ,et
.3.4. ProofsSket
h of the proof of Theorem 3.1In the following, we give an insight into the rather lengthy argument of The-orem 3.1 (see [11℄ for a detailed proof), and explain the role of assumptions(A0)-(A3).We start by observing that if f0 = 0 in (3.31), then, by Remark 3.1, 
learly
f(t) ≡ 0 is a solution to Eq. (3.31). It is the unique strong solution in
D(Λ2) ∩ X+, as it follows from (3.45). Moreover, if 0 6= f0 ∈ D(Λ2) ∩ X+,but a(‖Λf0‖) = 0, then Q±(t, f0) = 0, for a.e. t ≥ 0, by (3.44), hen
e
f(t) ≡ f0 is a solution to (3.31). It is the unique solution in D(Λ2) ∩ X+,be
ause any other solution f∗(t) ∈ D(Λ2) ∩ X+ must be a.e. 
onstant.Indeed, applying (3.45), and invoking the positivity and monotoni
ity of a,we obtain 0 ≤ a(‖Λf∗(t)‖) ≤ a(‖Λf0‖) = 0. This leads (again by (3.44)) to
Q±(t, f(t)) = 0 a.e.Therefore, one 
an assume below that f0 6= 0 and a(‖Λf0‖) 6= 0.We �rst refer to the existen
e part of the theorem. Inspired from [2℄, one
an 
onsider the problem

d

dt
f + a(‖Λf0‖)Λf = B(t, f, f), f(0) = f0 ∈ X+ (t ≥ 0). (3.54)
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ity Methods 73Here a is as in (A2), and B is formally de�ned by
B(t, g, h) := Q(t, g(t))+a

(
‖Λg(t)‖ +

∫ t

0
∆(s, h(s))ds

)
Λg(t) (t ≥ 0 a.e.)(3.55)for all g(t) ∈ D(Λ) ∩ X+ and h(t) ∈ D(Λ2) ∩ X+ with ΛQ±(·, h(·)) ∈

L1
loc(R+;X+).By (3.45), any strong positive solution of Eq. (3.31) is also a solution to(3.54). Conversely, any positive strong solution of problem (3.54) is a solutionof Eq. (3.31), provided that it satis�es (3.45).Re
all now that, by (A0) and Lemma 3.1b), the operator L = −a(‖Λf0‖)Λis the in�nitesimal generator of a C0 positive semigroup {

V t
}

t≥0
, and

0 ≤ V th ≤ exp(−a(‖Λf0‖)λ0t)h ≤ h (h ∈ X+). (3.56)Thus any solution of Eq. (3.54) is also a solution of the mild problem
f(t) = V tf0 +

∫ t

0
V t−sB(s, f, f)ds , (3.57)the integral being in the sense of Bo
hner.Eq. (3.57) is useful for monotone iteration. Indeed, {

V t
}

t≥0
is positive, andone 
an prove5 the following properties ([11℄).Lemma 3.3 Let gi, hi, i = 1, 2, satisfy the 
onditions of Remark 3.2. Sup-pose that g1(t) ≤ g2(t) and h1(t) ≤ h2(t) a.e. on R+. Then B(·, gi, hj) ∈

L1
loc(R+;X+), i, j = 1, 2. In addition, for a.e. t ≥ 0,

0 ≤ B(t, g1, h1) ≤ B(t, g2, h2). (3.58)Thus, formally, by (3.57) one 
ould 
onsider the following iteration, hopefully,in
reasing:
f1(t) = 0, f2(t) = V tf0, (3.59)

fn(t) = V tf0 +

∫ t

0
V t−sB(s, fn−1, fn−2)ds (n = 3, 4, ...). (3.60)Note that if {fn(t)}n is su�
iently regular, by di�erentiation, (3.60) gives

d

dt
fn(t) = B(t, fn−1, fn−2) − a(‖Λf0‖)Λfn(t) (t > 0 a.e., n ≥ 3),(3.61)5See the Appendix.
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il Pompiliu Grünfeldand integrating (3.61) one has
fn(t) = f0 +

∫ t

0
Q(s, fn−1(s))ds+

+

∫ t

0
a

(
‖Λfn−1(s)‖ +

∫ s

0
∆(τ, fn−2(τ))dτ

)
Λfn−1(s)ds.

−
∫ t

0
a(‖Λf0‖)Λfn(s)ds. (3.62)However, in general, B(·, g, h) does not exist for all g, h ∈ X. Hen
e we needgive a meaning to (3.60), at least for f0 in a su�
iently large set. Here 
omesthe role of D∞

+ (of D(Λ3) ∩ X+). Indeed, if f0 ∈ D∞
+ (f0 ∈ D(Λ3) ∩ X+),then one 
an show that fn(t) ∈ D∞

+ (f0 ∈ D(Λ3) ∩ X+), and is su�
ientlyregular. This is 
lari�ed in the lemma bellow, whi
h summarizes the mainresults6 of [11℄ on the properties of {fn(t)}n.Lemma 3.4 a) In addition, to the 
onditions of Theorem 3.1a), let f0 ∈ D∞
+ .Then fn(t), Q±(t, fn(t)) ∈ D∞

+ a.e. on R+. Moreover, ΛkQ±(·, fn(·)) ∈
L1

loc(R+;X+), k = 0, 1, ...., n = 1, 2, ... .b) Assume the 
onditions of Theorem 3.1b). Then fn(t) ∈ D(Λ3) ∩X+ and
Q±(fn(t)) ∈ D(Λ2) ∩ X+; t ≥ 0. Moreover, ΛkQ±(fn) ∈ L1

loc(R+;X+),
k = 0, 1, 2, , n = 1, 2, ... .
) In both 
ases a) and b), Λkfn ∈ C(R+;X+), k = 0, 1, 2, and fn is a.e.di�erentiable on R+ and satis�es (3.61) (and (3.62)). Moreover, for any
t ≥ 0, the sequen
e {fn(t)}n is in
reasing.d) If fn(t) is as in a) or b), and n ≥ 2, then

fn(t) ≤ f0 +

∫ t

0
Q(s, fn−1(s))ds (3.63)and

‖Λfn(t)‖ +

∫ t

0
∆(s, fn−1(s))ds ≤ ‖Λf0‖ . (3.64)e) If fn(t) is as in a) or b), and Γ is an operator of type D on D∞

+ , (on
D(Λ2) ∩X+) then for any t ≥ 0,

‖Γfn(t)‖ ≤ ‖Γf0‖ (n = 1, 2, ...). (3.65)6See the Appendix for a proof.
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ity Methods 75In parti
ular,
∥∥Λ2fn(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0, n = 1, 2, ...), (3.66)with ρ as in (3.42).f) Suppose that fn(t) is as in a) (as in b)). Let Γ : D(Γ) ⊂ X 7→ X besome 
losed, positive linear operator, satisfying (3.46), with M1 ⊇ D∞
+ (with

M1 ⊇ D(Λ3) ∩X+). Then for any t ≥ 0,
‖Γfn(t)‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (n = 1, 2, ...), (3.67)with ρΓ as in (3.46).By the above lemma, {fn(t)}n is in
reasing, and the key inequality (3.64)shows that {fn(t)}n is norm bounded7. Thus {fn(t)}n is 
onvergent, be-
ause X is monotone 
omplete. One expe
ts the limit to satisfy (3.54) (and(3.57), too). The proof hinges on the appli
ation of Lebesgue's dominated
onvergen
e theorem to (3.62) (as the operators Q± are o-
losed, and Λ is
losed). To this end, the limit of {fn(t)}n must be in D(Λ2), whi
h followsfrom (3.66). Now, to prove that the limit of {fn(t)}n is a strong solution to(3.31), it remains to show that the above limit satis�es (3.45). This is doneby applying Gronwall's Lemma to an inequality to be obtained from (3.62)(by using (3.66) and the 
onvexity of a). But the above pro
edure providesthe existen
e part of the Theorem 3.1a) only for f0 ∈ D∞

+ , hen
e one morestep is needed. Sin
e D∞
+ is dense in X+ (
f. Lemma 3.1), any initial datumas in the assumptions of Theorem 3.1a), 
an be approximated by elementsof D∞

+ . This leads to a monotone s
heme approximating (3.60) and one 
anapply su

essively Lebesgue's 
onvergen
e theorem. In details, one pro
eedsas follows.Step A. If in addition to the 
onditions of Theorem 3.1 a), one assumes
f0 ∈ D∞

+ then Lemma 3.4 applies. As Λk is 
losed, 
learly, by (3.39) andthe monotone 
ompleteness of X, it follows that there is some f(t) ∈ D(Λk)su
h that Λkfn(t) ր Λkf(t) as n → ∞, t ≥ 0, k = 0, 1, 2. Consequently,
f(t) satis�es (3.47). Moreover, Remark 3.2 implies that Λkf , k = 0, 1, 2,
Q±(·, f(·)), and ΛQ±(·, f(·)) are in L1

loc(R+;X+). Then, applying Lebesgue'sdominated 
onvergen
e theorem in (3.62) and (3.64), we get
f(t) = f0 +

∫ t

0
Q(s, f(s))ds+7Inequality (3.64) motivates the 
onstru
tion (3.60) as a se
ond-order re
urren
e.Indeed, ex
ept for the 
ase ∆ ≡ 0, an inequality of the form (3.64) 
ould not beproved if (3.60) was rede�ned with B(s, fn−1, fn−1) instead of B(s, fn−1, fn−2).
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+

∫ t

0

[
a

(
‖Λf(s)‖ +

∫ s

0
∆(τ, f(τ))dτ

)
− a(‖Λf0‖)

]
Λf(s)ds (t ≥ 0)(3.68)(i.e., f is a strong solution of Eq.(3.54)) and, also,

0 ≤ ψ(t) := ‖Λf0‖ − ‖Λf(t)‖ −
∫ t

0
∆(s, f(s))ds (t ≥ 0). (3.69)Obviously, (3.68) implies f,Λf ∈ C(R+;X+).Note now the usefulness of (3.68): to prove that f is a strong solution of(3.31), it is su�
ient to show that ψ ≡ 0 (whi
h means exa
tly (3.45)).To this end, �rst observe that sin
e, by (A2), a is non-de
reasing and lo
allyLips
hitz, then inequality (3.69) implies that there is a number 0 < c =

c(‖Λf0‖), depending only on ‖Λf0‖, su
h that
0 ≤ a(‖Λf0‖) − a

(
‖Λf(t)‖ +

∫ t

0
∆(τ, f(τ))dτ

)
< cψ(t). (3.70)Further rewriting Eq. (3.68) 
onveniently, and applying Λ to the resultingequation, one 
an invoke (3.26) and (3.27) to obtain

ψ(t) =

∫ t

0

[
a(‖Λf0‖) − a

(
‖Λf(s)‖ +

∫ s

0
∆(τ, f(τ))dτ

)]∥∥Λ2f(s)
∥∥ds.(3.71)As f(t) satis�es (3.47), introdu
ing (3.70) in (3.71), we �nd

0 ≤ ψ(t) ≤ c

∫ t

0
ψ(s)

∥∥Λ2f(s)
∥∥ds ≤ cT

∫ t

0
ψ(s)ds (0 ≤ t ≤ T ), (3.72)for ea
h T > 0. Here, cT > 0 is a number depending only on T and f0.Now the Gronwall inequality implies ψ(t) = 0, 0 ≤ t ≤ T , for any T > 0.This 
on
ludes the existen
e part of the proof of the Theorem 3.1a), in the
ase f0 ∈ D∞

+ ).Step B. We use the result of the previous step to prove the existen
e partof Theorem 3.1 a), in the 
ase f0 ∈ D(Λ2) ∩ X+, as follows. First notethat by Lemma 3.1b), there is an in
reasing sequen
e {f0,i} ⊂ D∞
+ su
h that

f0,i ր f0, as i→ ∞. Then, by Step A, there is a sequen
e of strong solutions
{Fi}i of Eq. (3.31) with Fi(0) = f0,i, satisfying the properties of the theorem.In parti
ular,

∥∥Λ2Fi(t)
∥∥ ≤ exp [ρ(‖Λ1f0,i‖)]

∥∥Λ2f0,i

∥∥ (t ≥ 0). (3.73)
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Fi(t) = f0,i +

∫ t

0
Q(s, Fi(s))ds, (3.74)

ΛFi(t) = Λf0,i +

∫ t

0
ΛQ(s, Fi(s))ds, (3.75)and

‖ΛFi(t)‖ +

∫ t

0
∆(s, Fi(s))ds = ‖Λf0,i‖ . (3.76)Moreover, by Step A, ea
h Fi is the limit of an in
reasing sequen
e {fn,i(t)}nde�ned by (3.60) with fn,i(0) = f0,i. But the positivity of V t and Lemma3.3 imply that if f0,i ≤ f0,j, then fn,i(t) ≤ fn,j(t) for all n and t ≥ 0. Thenthe sequen
e {Fi} is in
reasing.Furthermore, sin
e ‖Λ1f0,i‖ ≤ ‖Λ1f0‖, ∥∥Λ2f0,i

∥∥ ≤
∥∥Λ2f0

∥∥, and sin
e ρ isnon-de
reasing, it follows from inequality (3.73) that
∥∥Λ2Fi(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0). (3.77)Now a 
onvergen
e argument, as in the beginning of Step A, implies thatthere is an element f ∈ L1
loc(R+;X+), with the properties stated in Re-mark 3.2, su
h that Fi(t) ր f(t) as i → ∞, a.e. It remains to apply, say,Lebesgue's 
onvergen
e theorem in (3.74)�(3.76) to 
on
lude the existen
epart of Theorem 3.1a).Existen
e in 
ase b). In this 
ase, Lemma 3.4 applies, 
orresponding to theful�llment of the 
onditions of Theorem 3.1b). Then, the proof is as in StepA of 
ase a).Finally, we prove the uniqueness part of Theorem 3.1.Let f be the solution of Eq. (3.31) provided by the existen
e part of thisproof, and re
all that it satis�es Eq. (3.45). If F is another positive solutionof Eq. (3.31) with regularity properties as in Theorem 3.1, then F satis�esEq. (3.45), too, hen
e

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds = ‖Λf0‖ = ‖ΛF (t)‖ +

∫ t

0
∆(s, F (s))ds.By Lebesgue's 
onvergen
e theorem applied to (3.60), 
learly, f also solvesEq. (3.57). On the other hand, F is a solution to (3.57). But f ≤ F , be
auseof the form of (3.60), so that

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds < ‖ΛF (t)‖ +

∫ t

0
∆(s, F (s))dson some subset of R+ with nonzero Lebesgue measure. 2
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il Pompiliu GrünfeldProof of Theorem 3.2As in the proof of Theorem 3.1, to ex
lude trivial situations, we suppose the
‖f0‖ 6= 0 or a(‖f0‖) 6= 0. By Lemma 3.1, there is a sequen
e {fn,0}n ⊂ D∞

+su
h that fn,0 ր f0 as n → ∞. Then by Theorem 3.1a) the i.v.p. (3.31)with initial 
ondition fn,0 has a unique positive solutions Fn ∈ D(Λ2) ∩X+su
h that (3.31) provided by Theorem 3.1 with initial datum fn,0 forms anin
reasing sequen
e su
h that Fn,ΛFn ∈ C(R+;X+),
Fn(t) = fn,0 +

∫ t

0
Q+(s, Fn(s))ds−

∫ t

0
Q−(s, Fn(s))ds (t ≥ 0). (3.78)and

‖ΛFn(t)‖ +

∫ t

0
∆(s, Fn(s)ds = ‖Λfn,0‖ (t ≥ 0). (3.79)But ∆(s, Fn(s) ≥ 0 so that

‖ΛFn(t)‖ ≤ ‖Λfn,0‖ ≤ ‖Λf0‖ (t ≥ 0). (3.80)Note now that Fn, fn,0, Q±(t, Fn(t)) are positive. Then (3.26) and (3.27)imply
‖Fn(t)‖ = ‖fn,0‖ +

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds−

∫ t

0

∥∥Q−(s, Fn(s))
∥∥ ds (t ≥ 0),(3.81)To prove the theorem, we need show that {Fn(t)}n and {Q±(t, Fn(t))}n are
onvergent, and, then we need to inter
hange the limits 
onveniently in (3.78)and (3.81).To this end, �rst observe that sin
e {fn,0}n is positive and in
reasing, andea
h Fn is the limit of a sequen
e of the form (3.60), we obtain by a sim-ple indu
tion (whi
h uses the positivity and isotoni
ity of B in (3.60)) that

{Fn(t)}n is in
reasing. Thus, by (A0), the positive sequen
e {ΛFn(t)}n isalso in
reasing. Then (A0) and (3.80) give ‖Fn(t)‖ ≤ λ0
−1 ‖ΛFn(t)‖ ≤

λ0
−1 ‖Λfn,0‖ ≤ λ0

−1 ‖Λf0‖. Hen
e, for ea
h t ≥ 0, both {Fn(t)}n and
{ΛFn(t)}n are 
onvergent, be
ause X is monotone 
omplete. Moreover, as Λis 
losed, the limit f(t) of {Fn(t)}n satis�es f(t) ∈ D(Λ) ∩X+, and we have
ΛFn(t) ր Λf(t) as n → ∞. Then, also {Q±(t, Fn(t))}n are in
reasing, and
Q±(t, Fn(t)) ≤ Q±(t, f(t)) a.e. In parti
ular, ‖Q±(t, Fn(t))‖ ≤ ‖Q±(t, f(t))‖a.e. Consequently, Q±(t, Fn(t)) ր Q±(t, f(t)) as n → ∞, t -a.e., be
ause Xis monotone 
omplete and Q±(t, ·) are o-
losed t-a.e.Now, applying (A2) and (3.80) we get

∥∥Q−(t, f(t))
∥∥ = lim

n→∞

∥∥Q−(t, Fn(t))
∥∥ ≤ a(‖Λf0‖) ‖Λf0‖ (3.82)
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e Q−(·, f) ∈ L1
loc(R+;X+).Thus we 
an take the limit n → ∞ in (3.78) and (3.81), and we 
an apply,say, Lebesgue's theorem to the se
ond term of (3.78) and (3.81), respe
tively.We obtain

f(t) = f0 + lim
n→∞

∫ t

0
Q+(s, Fn(s))ds−

∫ t

0
Q−(s, f(s))ds, (3.83)and, by (3.26),

‖f(t)‖ = ‖f0‖ + lim
n→∞

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds−

∫ t

0

∥∥Q−(s, f(s))
∥∥ ds. (3.84)Sin
e ‖f(t)‖ <∞ for t ≥ 0, and Q−(·, f) ∈ L1

loc(R+;X+), by (3.84), for ea
h
t ≥ 0,

lim
n→∞

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds <∞. (3.85)Hen
e, applying, e.g., the monotone 
onvergen
e theorem, it follows that

Q+(·, f) is Bo
hner integrable and we 
an �nally pass to the limit under theintegral sign in (3.83), (3.84), (3.80), and in (3.79), to 
on
lude the proof oftheorem. 2Proof of Proposition 3.3Equality (3.51) follows observing that ∆(s, Fn(s)) ≡ 0 in (3.79), and takingthe ∞ limit. As in the uniqueness part of the proof of Theorem 3.1, thesolution f of (3.31) provided by Theorem 3.2 also solves the mild problem(3.57) (but here, ∆(t, f) = 0 in the expression (3.55) of B, by virtue of(3.51)). Now the uniqueness follows by an argument similar to the one usedin the uniqueness part of the proof of Theorem 3.1, taking now advantage ofthe property ∆(s, Fn(s)) ≡ 0 (hen
e of (3.51)). 2Proof of Proposition 3.4a) Let f0, {f0,i} , {fn,i(t)}n, and {Fi(t)}i be as in Step B of the proof ofTheorem 3.1a). Then for ea
h i, the sequen
e {Γfn,i(t)}n is positive andin
reasing. Moreover, it is norm-bounded be
ause
‖Γfn,i(t)‖ ≤ ‖Γf0‖ (t ≥ 0), (3.86)as a 
onsequen
e of (3.65) and of the property Γf0,i ≤ Γf0.
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omplete, it follows that {Γfn,i(t)}n is 
onvergent for all
i.Re
all that Γ is 
losed, and fn,i(t) ր Fi(t) as n→ ∞, for all i. Consequently,
Fi(t) ∈ D(Γ) and Γfn,i(t) ր ΓFi(t) as n → ∞, i = 1, 2, .... In addition,
‖ΓFi‖ ≤ ‖Γf0‖, t ≥ 0,i = 1, 2, .... Then, reasoning as before, we 
on
ludethat f(t) ∈ D(Γ), ΓFi(t) ր Γf(t) as i→ ∞, and that ‖Γf‖ satis�es (3.52).b) The proof of (3.53) follows as in a), with the only remark that instead of(3.86), we make use of the inequalities
‖Γfn,i(t)‖ ≤ exp(ρΓ(‖Λ1f0,i‖)t) ‖Γf0,i‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (t ≥ 0),(3.87)whi
h are immediate by (3.67), be
ause ρΓ is non-de
reasing. 24. Appli
ations4.1. Smolu
howski's 
oagulation equationFor k ≥ 0, let L1

k := L1
k(R+; dy) be the spa
e of real measurable fun
tions

g : R+ 7→ R su
h that
‖g‖L1

k
:=

∫

R+

(1 + y)k |g(y)| dy <∞. (4.1)Denote L1
k,+ = {g ∈ L1

k : g ≥ 0}. Consider problem (2.2) in the spa
e
X = L1(R+; dy) (equipped with the usual norm ‖·‖ = ‖·‖L1 , and with thenatural order ≤).Consider L1

k as a subset of X. Let i = 0, 1 and de�ne the positive linearoperators Λc,i : D(Λc,i) ⊂ X 7→ X by D(Λc,i) = L1
γi
, (Λc,ig)(y) := λi(y)g(y),with λi(y) := (1 + y)γi, y ≥ 0 a.e., where γ0 = β and γ1 = α+ β.Note that (2.3) and (2.4) de�ne Q+

c and Q−
c as positive and isotone nonlinearoperators in X, respe
tively, with the 
ommon domain Dc := L1

β.Then the i.v.p. for (2.2) 
an be formulated in X as
d

dt
f = Qc(f) = Q+

c (f) −Q−
c (f) f(0) = f0, t > 0. (4.2)In this 
ase, one 
an apply Theorem 3.1a). The only point is to 
he
k that Λc,i(i = 0, 1) and Q±

c verify inequalities of the form (3.40) and (3.42). Indeed, if
g ∈ L1

2β,+, then starting from (2.7), we �nd
0 ≤

∥∥Λc,iQ
−
c (g)

∥∥ −
∥∥Λc,iQ

+
c (g)

∥∥ =
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=

1

2

∫

R2
+

[(1 + y)γi + (1 + y∗)
γi − (1 + y + y∗)

γi ]q(y, y∗)g(y)g(y∗)dydy∗,(4.3)be
ause 0 ≤ γi ≤ 1, and
(1 + y)γ + (1 + y∗)

γ

(1 + y + y∗)γ
≥ inf

x≥0

1 + xγ

(1 + x)γ
= 1 (0 ≤ γ ≤ 1, y, y′ ≥ 0). (4.4)Inequality (4.3) shows that g 7→ ∆c(g) := ‖Λc,0Q

−
c (g)‖−‖Λc,0Q

+
c (g)‖ de�nesa positive isotone map ∆c : D(∆c) 7→ R with domain D(∆c) = L1

2β,+.Starting again from (2.7), we �nd that if g ∈ L1
3β,+, then

∥∥Λ2
c,0Q

+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ =

=
1

2

∫

R2
+

[
(1 + y + y∗)

2β − (1 + y)2β − (1 + y∗)
2β

]
q(y, y∗)g(y)g(y∗)dydy∗.(4.5)If 0 ≤ β ≤ 1/2, applying again (4.4) in (4.5), we get

∥∥Λ2
c,0Q

+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ ≤ 0, (4.6)whi
h is of the form (3.42) with ρ ≡ 0.If 1/2 < β ≤ 1, then to estimate (4.5), we apply the following form ([11℄) ofPovzner's algebrai
 inequality, whi
h 
an be easily proved8:
(1+y+y∗)

2β −(1+y)2β −(1+y∗)
2β ≤ 2(1+y)β(1+y∗)

β (y, y∗ ≥ 0). (4.7)Thus, applying (4.7) in (4.5), we �nd that there is a number c > 0 su
h that
∥∥Λ2

c,0Q
+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ ≤ c ‖Λc,1g‖
∥∥Λ2

c,0g
∥∥ . (4.8)Clearly, inequality (4.8) is of the form (3.42) with ρ(x) = cx.Let ac(x) := a0x, for some 
onstant a0 > 0. If a0 is su�
iently large, then themap L1

β,+ ∋ g 7→ a0 ‖Λc,0g‖Λc,0g − Q−
c (g) ∈ X has the properties requiredin (A2).It appears that Q±

c , Λc,0, Λc,1 and ac verify the 
onditions of Theorem 3.1a)for Q±, Λ, Λ1 and a, respe
tively, provided that a0 is su�
iently large.Consequently, one 
an apply Theorem 3.1a) to the i.v.p. (4.2). We obtain8Indeed, (4.7) is equivalent to ζ(x) = 2xβ +1+x2β − (1+x)2β ≥ 0 for all x > 0.However, as ζ(x−1) = x−2βζ(x), to prove that ζ(x) ≥ 0 for x > 0, we need onlyshow that ζ(x) ≥ 0 on (0, 1], whi
h is immediate, be
ause 1/2 < β ≤ 1.
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il Pompiliu GrünfeldTheorem 4.1 Let f0 ∈ L1
2β,+ in problem (4.2). Then Eq. (4.2) has a uniquestrong solution f su
h that f(t) ∈ L1

2β,+, t ≥ 0, and ‖f(t)‖L1
2β

is lo
allybounded on R+. In addition f, (1 + y)βf ∈ C(R+;L1(R+,dy)),
‖f(t)‖L1

β
+

∫ t

0
∆c(f(s))ds = ‖f0‖L1

β
(t ≥ 0), (4.9)and there is a 
onstant c > 0 su
h that

‖f(t)‖L1
2β

≤ exp(c ‖f0‖L1
α+β

t) ‖f0‖L1
2β

(t ≥ 0). (4.10)Note here that if 0 ≤ 2β < 1, then Theorem 4.1 allows for the existen
eof solutions with in�nite initial mass (see also [22℄) i.e., f0 ∈ L1
2β,+, but

f0 /∈ L1
1. The theorem does not imply dire
tly the mass 
onservation, ex
eptfor the 
ase q1 > 0, β = 1 and α = 0. However, if f0 ∈ L1

2β,+ ∩ L1
1, thenthe solution f(t) has �nite mass: indeed, if Γ : L1

1 ⊂ L1 7→ L1 is de�ned by
(Γg)(y) = yg(y) a.e. on R+, then 
learly, Γ is of type D on ∩∞

k=1L
1
kβ,+, hen
eProp. 3.4a) applies, so that f ∈ L1

2β,+ ∩ L1
1, and ‖Γf(t)‖ ≤ ‖Γf0‖.Theorem 4.1 remains valid in the 
ase of the dis
rete Smolu
howski equation(2.10), with obvious 
hange in formulation9.4.2. Povzner-like model with dissipative 
ollisionsLet X = L1(R3 ×R

3; dxdv) = L1, equipped with the norm ‖·‖ := ‖·‖L1 andthe natural order ≤. Denote by L1
k := L1

k(R
3 × R

3; dxdv), k ∈ R, the spa
eof measurable fun
tions on g : R
3 × R

3 7→ R satisfying
‖g‖L1

k
:=

∫

R+

(1 + |v|2)k
2 |g(x,v)| dxdv <∞. (4.11)As before, L1

k,+ denotes the positive 
one in L1
k. It 
an be seen that (2.15) and(2.16) de�ne Q±

d as positive and isotone operators on the 
ommon domain
D := L1

γ . This follows easily if we perform the 
hange of variable (0, R]×Ω ∋
(r,n) 7→ y := rn ∈ {z ∈R

3 : |z| ≤ R} in (2.15) and (2.16), and then takeinto a

ount (2.17).Now, formulated in X, the i.v.p. (2.14) reads
d

dt
f = Af +Q+

d (f) −Q−
d (f), f(0) = f0 ≥ 0, (4.12)9Note that L1

r, de�ned before, must be now repla
ed by l1r(R) = {c = (cj) : cj ∈
R, j = 1, 2, ..., ‖c‖r :=

∑
∞

j=1
jr |cj | <∞}, r ≥ 0.
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ity Methods 83where f = f(t,x,v) is the one-parti
le distribution fun
tion, A is the in-�nitesimal generator of the C0 group (U tf)(x,v) := f(x− tv,v), a.e.Let the positive linear operator Λd : L1
2 7→ X be de�ned by (Λdg)(x,v) :=

λ(v)g(x,v) a.e. on R
3 ×R

3, with λ(v) := (1 + |v|2). De�ne ad(x) := c0x forsome 
onstant c0 > 0. If c0 is su�
iently large, then ad, Λd and Q±
d verifythe 
onditions of Corollary 3.1 for a, Λ = Λ1 and Q±, respe
tively.Indeed, the operators Q±

d are p-saturated. Moreover, they are o-
losed, bythe monotone 
onvergen
e theorem. It is immediate that the domain 
on-ditions imposed in Corollary 3.1 are satis�ed. Further, applying (2.12) in(2.18), we obtain an inequality of the form (3.40), i.e., if g ∈ L1
4,+, then

0 ≤ ∆d(g) :=
∥∥ΛdQ

−
d (g)

∥∥ −
∥∥ΛdQ

+
d (g)

∥∥ =

=

∫ R

0
dr

∫

Ω×R3×R3×R3

π(r,n,v,w,x)g(x,v)g(x + rn,w)dndvdwdx,(4.13)where π(r,n,v,w,x) := β(n)(1−β(n)) |〈n,v − w〉|2+γ P (r,n). Remark herethat the map L1
4,+ ∋ g 7→ ∆d(g) ∈ R is positive and isotone. Moreover, for

c0 su�
iently large, the map L1
2,+ ∋ g 7→ c0 ‖Λdg‖Λdg −Q−

d (g) ∈ X is alsopositive and isotone. Further, to obtain an inequality of the form (3.42), notethat (2.12) gives λ(v′)2 + λ(w′)2 ≤ (2 + |v′|2 + | w′|2)2 ≤ (2 + |v|2 + |w|2)2
= λ(v)2 + λ(w)2 + 2λ(v)λ(w), whi
h 
an be applied in ( 2.18) to 
on
ludeeasily that there are two 
onstants c1, c > 0 su
h that

∥∥Λ2
dQ

+
c (g)

∥∥ −
∥∥Λ2

dQ
−
d (g)

∥∥ ≤

≤ c1

∫ R

0
dr

∫

Ω×R3×R3×R3

r2λ(v)λ(w)1+
γ
2 g(x,v)g(x + rn,w)dndvdwdx ≤

≤ c ‖Λdg‖
∥∥Λ2

dg
∥∥ , (4.14)for all g ∈ L1

6,+. Finally, it is obvious that the group U t (generated by
A) 
ommutes with the semigroup V t generated by Λd, and ΛkQ+(U ·g) ∈
L1

loc(R+;X+) for all g ∈ ∩∞
n=1L

1
n,+, k = 1, 2, .....Therefore, by Corollary 3.1, we have the following result ([11℄):Theorem 4.2 Let f0 ∈ L1

4,+ in problem (4.12). Then Eq. (4.12) has aunique positive mild solution f su
h that f(t) ∈ L1
4,+, t ≥ 0, and ‖f(t)‖L1

4
islo
ally bounded on R+. In addition, f , (1 + |v|2)f ∈ C(R+;L1),

‖f(t)‖L1
2
+

∫ t

0
∆d(f(s))ds = ‖f0‖L1

2
(t ≥ 0), (4.15)
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il Pompiliu Grünfeldand there is a 
onstant c > 0 su
h that
‖f(t)‖L1

4
≤ exp(c ‖f0‖L1

2
t) ‖f0‖L1

4
(t ≥ 0). (4.16)The argument of Theorem 4.2 
an be repeated with obvious modi�
ationsto provide a similar result for the spa
e-homogeneous version of Eq. (2.14),whi
h 
oin
ides with the for
e-free, three dimensional spa
e-homogeneousBoltzmann model for granular �ows, [5, 6℄.4.3. Povzner-like model with 
hemi
al rea
tionsLet X := L1(R3 ×R

3; dxdv)N be equipped with the order ≤ indu
ed by theorder of the 
omponents (i.e., the natural order of L1). The norm on X isde�ned as
‖g‖ :=

N∑

i=1

∫

R3×R3

|gi(x,v)| dxdv =
N∑

i=1

‖gi‖L1 . (4.17)Denote by L1
k := L1

k(R
3×R

3; dxdv), k ∈ R, the spa
e of measurable fun
tions
g : R

3 × R
3 7→ R satisfying

‖g‖L1
k

:=

∫

R3×R3

(1 + |v|2 )
k
2 |g(x,v)| dxdv (4.18)and let L1

k,+ be the positive 
one in L1
k.It is natural to formulate the i.v.p. (2.29) in the spa
e X.Under the 
onditions of the model, (2.30) and (2.31) de�ne Q+

i and Q−
i ,

1 ≤ i ≤ N , as operators from the 
ommon domain (L1
2)

N ⊂ X to L1(R3; dv).De�ning the operators Q±
B : (L1

2)
N ⊂ X 7→ X by Q±

B = (Q±
1 , ....., Q

±
N ), we
an write the i.v.p. for Eq. (2.29) in X as

d

dt
f +A = Q+

B(t, f) −Q−
B(t, f), 0 ≤ f(0) = f0 ∈ X (t > 0), (4.19)where A is the in�nitesimal generator of the C0 group of isometries {U t}t∈Ron X, given by (U tf)(x,v) := f((x− tv,v).De�ne the positive 
losed linear operator ΛB : (L1

2)
N 7→ X by (ΛBg)i(v) =

λi(v)g(v) a.e. on R
3 × R

3 , where λi(v) := mi +mi |v|2 /2 +Ei, 1 ≤ i ≤ N.One 
an state the following result ([12℄):
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ity Methods 85Theorem 4.3 Suppose that in problem (4.19), f0,i ∈ L1
4,+ , 1 ≤ i ≤ N .Then Eq. (4.19) has a unique mild solution f(t) = (f1, ..., fN ) su
h that

fi(t) ∈ L1
4,+, t ≥ 0, and ‖fi(t)‖L1

4
is lo
ally bounded on R+, 1 ≤ i ≤ N . Inaddition, fi, (1 + |v|2)fi ∈ C(R+;L1), 1 ≤ i ≤ N ,

‖ΛBf(t)‖ = ‖ΛBf0‖ (t ≥ 0), (4.20)and there is a 
onstant ρ0 > 0 su
h that
∥∥Λ2

Bf(t)
∥∥ ≤ exp(ρ0 ‖ΛBf0‖ t)

∥∥Λ2
Bf0

∥∥ (t ≥ 0). (4.21)The above result follows by applying Theorem 3.1 in the 
ase Λ = Λ1 = ΛB .Indeed, the domain 
onditions of Theorem 3.1, as well as properties (A0),(A1) 
an be immediately 
he
ked (with ∆ = 0, owing to (2.38). Next, let
a0 > 0 be some 
onstant, and de�ne a(x) := a0x. Owing to (2.38), for a0su�
iently large, the map L1

2,+ ∋ g → a0 ‖ΛBg‖ΛBg −Q−(g) ∈ X satis�es(A2). Finally, note that, as a 
onsequen
e of (2.39) (and of (2.37)), thereexists a number ρ0 > 0 su
h that
N∑

i=1

∫

R3

(Ψ
(0)
i + Ψ

(4)
i )2

[
Q+

i (g) −Q−
i (g)

]
dxdv ≤

≤ ρ0

∥∥∥(1 + |v|4 )g
∥∥∥

L1

∥∥∥(1 + |v|2 )g
∥∥∥

L1
, (4.22)for, say, all g ∈ (L1

6+)N .Then inequality (3.13) gives exa
tly (A3) with ρ(x) := ρ0x.4.4. Boltzmann model with inelasti
 
ollisions and rea
tionsLet X := (L1(R3; dv))N be equipped with the order ≤ indu
ed by the orderof the 
omponents (i.e., the natural order of L1). The norm on X is de�nedas
‖g‖ :=

N∑

i=1

∫

R3

|gi(v)| dv =
N∑

i=1

‖gi‖L1 . (4.23)Denote by L1
k := L1

k(R
3; dv), k ∈ R, the spa
e of measurable fun
tions

g : R
3 × R

3 7→ R satisfying
‖g‖L1

k
:=

∫

R+

(1 + |v|2)k
2 |g(v)| dv <∞ (4.24)
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il Pompiliu Grünfeldand let L1
k,+ be the positive 
one in L1

k.It is natural to formulate the i.v.p. for Eq. (2.47) in the spa
e X. Underthe above 
onditions, (2.48) and (2.49) de�ne Q+
i and Q−

i , 1 ≤ i ≤ N ,respe
tively, as operators from the 
ommon domain D = (L1
2)

N ⊂ X to
L1(R3; dv). De�ning Q±

B : D ⊂ X 7→ X by Q±
B = (Q±

1 , ....., Q
±
N ), we 
anwrite the i.v.p. for Eq. (2.47) in X

d

dt
f = Q+

B(f) −Q−
B(f), f(0) = f0 = (f0,1, ..., f0,N ) ∈ X+. (4.25)We shall prove the existen
e of solutions to problem (4.25), by applyingTheorem 3.1a) (in the 
ase Λ = Λ1). To this end, let the positive 
losedlinear operator ΛB : (L1
2)

N 7→ X be de�ned on 
omponents by (ΛBg)i(v) =
λi(v)g(v) a.e. on R

3 × R
3, where λi(v) := mi +mi |v|2 /2 + Ei, 1 ≤ i ≤ N .Denote lγ(w) :=

∑
i∈N (γ)

∑γi

j=1 λi(wi,j); γ ∈ M. Then 
learly, lγ(w) =
Mγ +Wγ(w), hen
e

0 ≤Wγ(w) < lγ(w). (4.26)In addition, de�ning λγ(w) :=
∏

i∈N (γ)

∏γi

j=1 λi(wi,j), γ ∈ M, we have
lγ(w) ≤ |γ|E1−|γ|λγ(w), (4.27)where E := min{mi + Ei : 1 ≤ i ≤ N}. It is useful to remark that, sin
e

Wγ(w) ≥ E |γ| > 0, and 0 ≤ q ≤ 1, then by (2.56), (4.26) and (4.27),
νβ,α(w) ≤ Cλα(w) (w ∈ R

|α|, a.e.), (4.28)for all α, β ∈ M. Here C = C(E,K) > 0 is a number depending on E and
K (re
all that K is the maximum number of partners in a rea
tion 
hannel).To apply Theorem 3.1a) to (4.25), �rst remark that Q±

B and ΛB verify thedomain 
onditions imposed to Q± and Λ by the theorem. Moreover, ΛB hasthe properties required for Λ in (A0). Further, observe that formula (2.57)provides a 
orrespondent to (3.40), spe
i�
ally,
∆B(g) :=

∥∥ΛBQ
−
B(g)

∥∥ −
∥∥ΛBQ

+
B(g)

∥∥ = 0 (g ∈ (L1
4,+)N ). (4.29)To obtain a 
orrespondent to (3.42), let sγ(w) :=

∑
i∈N (γ)

∑γi

j=1 λi( wi,j)
2.Next, using the de�nition of Q+

B and property (B2), and applying the obviousinequality sα(w) ≤ lα(w)2, we �nd that if g ∈ (L1
6,+)N , then

∥∥Λ2
BQ

+
B(g)

∥∥ =
∑

α,β∈M

∫

R3|α|×Ωβ

sα(w)pβ,α(w,n)(gβ ◦ uβ,α)(w,n)dwdn ≤
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≤

∑

α,β∈M

∫

R3|α|×Ωβ

lα(w)2pβ,α(w,n)(gβ ◦ uβ,α)(w,n)dwdn. (4.30)We apply property (3.9) in the last integral. Then inter
hanging α and β,we get
∥∥Λ2

BQ
+
B(g)

∥∥ ≤
∑

α,β∈ M

∫

R3|α|×Ωβ

(lβ ◦ uβ,α)2(w,n)rβ,α(w,n)gα(w)dwdn.(4.31)Sin
e lβ(w) = Mβ +Wβ(w), property (B3) implies that (lβ ◦ uβ,α)(w,n) =
lα(w) for all (α, β) ∈ CM , w ∈ D+

β,α. This and (B1) enable us to dedu
efrom (4.31) that
∥∥Λ2

BQ
+
B(g)

∥∥ ≤
∑

α,β∈M

∫

R3|α|×Ωβ

lα(w)2rβ,α(w,n)gα(w)dwdn. (4.32)Now, using the de�nitions of lα(w) and Q−
B , and then, taking advantage of(2.56) and (4.26), we obtain from (4.32)

∥∥Λ2
BQ

+
B(g)

∥∥ ≤

≤
∑

α,β∈M

∫

R3|α|×Ωβ

sα(w)rβ,α(w,n)gα(w)dwdn + ρB(‖ΛBg‖)
∥∥Λ2

Bg
∥∥ =

=
∥∥Λ2

BQ
−
B(g)

∥∥ + ρB(‖(ΛBg‖)
∥∥Λ2

Bg
∥∥ , (4.33)where ρB is a positive non-de
reasing (polynomial) fun
tion.Therefore, the last inequality is the required 
orrespondent to (3.42) (in the
ase Λ = Λ1).Further, let a0 > 0 be some 
onstant, and de�ne a(x) := a0

∑NK
p=1 x

p, x ≥ 0.Therefore, a(‖ΛBg‖) = a0
∑NK

p=1 ‖ΛBg‖p. But ea
h term ‖ΛBg‖p in the r.h.sof the last equality 
an be expressed by (4.23), and the resulting expression
an be expanded by the multinomial formula. Then, after some elementaryalgebra we get the following useful expression
a(‖ΛBg‖) = a0

∑

γ∈M, |γ|≥1

cγ,i

∫

R3|γ|

λγ(w)gγ(w)dw, (4.34)where cγ,i > 0 are stri
tly positive, 
onstant 
oe�
ients, γ ∈ M, |γ| ≥ 1,
1 ≤ i ≤ N .
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il Pompiliu GrünfeldWe show that if a0 is large enough, then (L1
2,+)N ∋ g 7→ a(‖ΛBf‖)ΛBg −

Q−
B(g) ∈ X is positive and isotone. To this end, �rst note that one 
an write
Q−

i (g)(v) = Ri(g)(v) gi(v), (g ∈ (L1
2,+)N , v ∈ R

3 a.e., 1 ≤ i ≤ N),(4.35)where
Ri(g)(v) :=

∑

α,β∈M

αi

∫

R3|α|−3


νβ,α(w)

∏

s∈N (α)

(s,j)6=(i,αi)

αs∏

j=1

gs(ws,j)




wi,αi
=v

dw̃i,(4.36)with νβ,α as in (2.56). Hen
e,
a(‖ΛBg‖)(ΛBg)i(v)−Q−

i (g)(v) = [a(‖ΛBg‖)λi(v) −Ri(g)(v)] gi(v). (4.37)It is 
onvenient to set
RA

i (g)(v) := C
∑

α,β∈M

αi

∫

R3|α|−3


λ

α(w)
∏

s∈N (α)

(s,j)6=(i,αi)

αs∏

j=1

gs(ws,j)




wi,αi
=v

dw̃i,(4.38)with C as in (4.28). Summing on β in (4.38), using the expli
it form of
λα(w), and invoking property (B1), we are easily led to

RA
i (g)(v) = Cλi(v)

∑

γ∈M, |γ|≥1

qγ,i

∫

R3|γ|

λγ(w)gγ(w) dw, (4.39)where qγ,i ≥ 0 are 
onstant 
oe�
ients, γ ∈ M, |γ| ≥ 1, 1 ≤ i ≤ N .We introdu
e (4.34) and (4.38) in (4.37). Consequently, for v ∈ R
3 a.e.,

a(‖ΛBg‖)(ΛBg)i(v) −Q−
i (g)(v) = [RA

i (g)(v) −Ri(g)(v)]gi(v) + Ti(g)(v),(4.40)where
Ti(g)(v) := λi(v)gi(v)

∑

γ∈M, |γ|≥1

(a0cγ,i −Cqγ,i)

∫

R3|γ|

λγ(w)gγ(w)dw. (4.41)Now we 
ompare (4.36) and (4.38), by taking advantage of (4.28). It fol-lows that the map (L1
2,+)N ∋ g 7→ [RA

i (g) − Ri(g)]gi ∈ L1 is positive and
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ity Methods 89isotone, 1 ≤ i ≤ N . Moreover, be
ause of the form of Ti(g), if a0 > 0is su�
iently large, then the mapping (L1
2,+)N ∋ g 7→ Ti(g)(v) ∈ L1 ispositive and isotone for all i. In this 
ase, by virtue of (4.40), the map

(L1
2,+)N ∋ g 7→ a(‖ΛBg‖)ΛBg −Q−

B(g) ∈ X is also positive and isotone.In 
on
lusion, the 
onditions of Theorem 3.1a) are ful�lled (in the 
ase Λ =
Λ1), so that we are in position to state the following result ([11℄):Theorem 4.4 Suppose that in problem (4.25), f0,i ∈ L1

4,+, 1 ≤ i ≤ N .Then Eq. (4.25) has a unique strong solution f(t) = (f1, ..., fN ) su
h that
fi(t) ∈ L1

4,+, t ≥ 0, and ‖fi(t)‖L1
4
is lo
ally bounded on R+, 1 ≤ i ≤ N . Inaddition, fi, (1 + |v|2)fi ∈ C(R+;L1), 1 ≤ i ≤ N ,

‖ΛBf(t)‖ = ‖ΛBf0‖ (t ≥ 0), (4.42)and there is a non-de
reasing fun
tion ρB : R+ 7→ R+ su
h that
∥∥Λ2

Bf(t)
∥∥ ≤ exp(ρB(‖f0‖)t)

∥∥Λ2
Bf0

∥∥ (t ≥ 0). (4.43)Theorem 4.4 does not state the 
onservation of mass, momentum and en-ergy, but the 
onservation (in arbitrary units) of the quantity mass+(total)energy. However, the properties of f(t), 
f. Theorem 4.4, allow for 
he
kingimmediately the separate 
onservation for ea
h of the above quantities.Theorem 4.4 redu
es to the main monotoni
ity result of [2℄ when Eq. (4.25)is parti
ularized to the 
ase of the 
lassi
al Boltzmann equation. Moreover,in that 
ase, using suitable additional Povzner-like estimations, we 
an re-obtain the general moment estimations of [2℄, as appli
ation of Prop. 3.4b).Finally, remark that similar analyses as for Theorems 4.2 and 4.4 
an bedeveloped for the main model 
onsidered, e.g., in [27℄.4.5. Nonlinear von Neumann-Boltzmann equationAs Λ is unbounded (by 
onstru
tion), the existen
e of solutions to problem(2.62) seems not immediate from general 
onsiderations.However, one 
an show that the 
onditions of Theorem 3.1 are ful�lled with
a(x) = x.First re
all that Tr[Λk(Q+ − Q−)](F ) = 0, for all 0 ≤ F ∈ D(Λk) ∩ X+,
k = 0, 1. Then observe that, sin
e Λ ≥ I, it follows easily that Tr[Λ2(Q+ −
Q−)](F ) ≤ εTr(ΛF )TrF ≤ εTr(ΛF )Tr(Λ2F ) for all 0 ≤ F ∈ D(Λ3) ∩X+.So we 
an now formulate our existen
e result ([12℄):
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il Pompiliu GrünfeldTheorem 4.5 Suppose that in problem (2.62), 0 ≤ F0 ∈ D(Λ2). ThenEq. (2.62) has a unique mild solution 0 ≤ F (t) ∈ D(Λ2), and TrF (t) islo
ally bounded. Moreover, F,ΛF ∈ C(R+;X), TrF (t) = TrF0, Tr(ΛF )(t) =
Tr(ΛF0) and Tr(Λ2F )(t) ≤ exp(tεTr(ΛF0))Tr(Λ2F0) (t ≥ 0).5. Con
luding remarksThe results of the previous se
tion of appli
ations 
an be easily 
ompletedtaking advantage of Theorem 3.2. As an example, the previous Theorem 4.1
an be 
ompleted as followsProposition 5.1 Let f0 ∈ L1

β,+ in problem (4.2). Then Eq. (4.2) has astrong solution f(t) ∈ L1
β,+, t ≥ 0.As mentioned before, the uniqueness is no longer ensured in the latter 
ase.Theorem 3.2 extends the main existen
e result of [11℄. The other generalexisten
e results formulated in [11℄ 
an be similarly 
ompleted, with obviousmodi�
ations. This allows to re
onsider the appli
ations of [11℄, a

ordingly,in an obvious manner.Prop. 3.3 provides uniqueness of the solutions in the spe
ial 
ase when ∆vanishes on a rather large set. This 
an be applied, for instan
e, to thespa
e-homogeneous Boltzmann equation with hard potentials, to obtain asimilar existen
e result as in, e.g., [20℄. However, in a more general 
ase,the uniqueness problem, under the 
onditions of Theorem 3.2, remains open.Here we 
an however remark that the regularity 
onditions required in thetheorem might be ne
essary to ensure the uniqueness of the strong solutions.Indeed, examples of non-unique (but) less regular solutions of the Boltzmannequation have been re
ently dis
overed, [26℄, [19℄.In this 
hapter, we presented various examples of existen
e results for gen-eralized Boltzmann models obtained by monotoni
ity methods. The abovemethods are potentially appli
able to investigate other evolution problems.On the other hand, the results presented in this review des
ribe only par-tially the properties of the models 
onsidered. They must be 
ompleted bya thorough study of other properties of the models, e.g. the existen
e of sta-tionary or/and equilibrium solutions, Lyapunov fun
tionals, H-theorems (seee.g. [7℄), asymptoti
 properties, 
onstru
tion of e�e
tive numeri
al methods.
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h of the Proof of Lemma 3.3Property B(·, gi, hj) ∈ L1
loc(R+;X+), i, j = 1, 2, follows from (A1), (A2) andRemark 3.2.To prove (3.58), let

yi(t) :=

∫ t

0
∆(s, hi(s))ds (i = 1, 2). (6.1)Clearly, 0 ≤ y1(t) ≤ y2(t), be
ause of the isotoni
ity of ∆(t, ·) (
f. (A1)).Further, de�ne F (x, y) := a(x+ y)− a(x), with a as in (A2). The propertiesof a (
f.(A2)) imply

F (x∗, y) − F (x, y) =

∫ y

0

[
a′(x∗ + ξ) − a′(x+ ξ)

]
dξ ≥ 0 (6.2)for all 0 ≤ x ≤ x∗ and y ≥ 0. Then one 
an show easily (invoking (A2), theisotoni
ity of Q+(t, ·) and the obvious inequality Λg1(t) ≤ Λg2(t)) that

0 ≤ B(t, g1, h1) = B(t, g1, 0) + F (‖Λg1(t)‖ , y1(t)) Λg1(t) ≤

≤ B(t, g2, 0) + F (‖Λg1(t)‖ , y1(t)) Λg2(t) (6.3)and
0 ≤ F (‖Λg1(t)‖ , y1(t)) ≤ F (‖Λg2(t)‖ , y1(t)) ≤ F (‖Λg2(t)‖ , y2(t)) . (6.4)Inequalities (6.3) and (6.4) 
an be now easily 
ombined to obtain (3.58). 22) Sket
h of the Proof of Lemma 3.4a) Sin
e D∞

+ is p-saturated and ΛkQ±(t, ·) are positive and isotone, the keypoint is to show that for ea
h T > 0 and n = 1, 2, ..., there is gn,T ∈ D∞
+su
h that

0 ≤ fn(t) ≤ gn,T (0 ≤ t ≤ T a.e.). (6.5)Then (3.41) gives Q−(t, gn,T ) ∈ D∞
+ a.e. on R+, hen
e ΛkQ−(·, gn,T ) ∈

L1
loc(R+;X+) for all k = 0, 1, 2, .... The same properties hold for Q+(t, gn,T )and ΛkQ+(·, gn,T ), respe
tively (by virtue of the assumptions of Theorem3.1a) and by (3.44)).Inequality (6.5) 
an be proved by indu
tion.Indeed, note that (6.5) is trivially veri�ed for n = 1 by g1,T := 0, and for

n = 2 by g2,T := f0. Further, at the indu
tion step, assuming that (6.5) is
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il Pompiliu Grünfeldful�lled for n = 1, 2, ..q − 1 (with q ≥ 3) applying, in essen
e, the propertiesof ∆, a, and (3.28), one �rst obtains
Λk

∫ t

0
B(s, gn−1,T , gn−2,T )ds =

∫ t

0
ΛkB(s, gn−1,T , gn−2,T )ds (0 ≤ t ≤ T ),(6.6)for all k = 1, 2, ... and n = 1, 2, ..., q − 1. Then observe that fq−1(t) ≤ gq−1,Tand fq−2(t) ≤ gq−2,T satisfy the 
onditions of Lemma 3.3 for g1 ≤ g2 and

h1 ≤ h2, respe
tively. Thus, applying 
onveniently (3.56) and (3.58) in(3.60), and invoking (6.6), we get
0 ≤ fq(t) ≤ f0 +

∫ T

0
B(s, gq−1,T , gq−2,T )ds := gq,T ∈ D∞

+ (0 ≤ t ≤ T ).(6.7)b) As before, it is su�
ient to show by indu
tion that property (6.5) is veri�edby gn,T ∈ D(Λ3) ∩X+.First note that if g1,T = 0 and g2,T = f0, then (6.5) is trivially veri�ed for
n = 1, 2, respe
tively.The indu
tion step is simpler than in a), be
ause now one 
an make use ofthe fa
t that V t is C0. Then, ∫ t

0 V
shds ∈ D(Λ) for all h ∈ X, t ≥ 0, whi
h,in our 
ase, implies (for any 0 ≤ t ≤ T )

∫ t

0
V t−sB(T, gq−1,T , gq−2,T )ds =

∫ t

0
V sB(T, gq−1,T , gq−2,T )ds ∈ D(Λ3)∩X+.(6.8)Sin
e, in our 
ase, B(t, gq−1,T , gq−2,T ) ≤ B(T, gq−1,T , gq−2,T ), we 
on
ludethe indu
tion step, using property (6.8) with the key inequality

0 ≤ fq(t) ≤ f0 +

∫ t

0
V t−sB(T, gq−1,T , gq−2,T )ds (0 ≤ t ≤ T ), (6.9)whi
h follows, in essen
e, by Lemma 3.3, and by applying (3.56) and (3.58)in (3.60).
) The statement follows from simple regularity 
onsiderations and somedire
t 
omputation.d) Obviously, 0 = f1(t) ≤ f2(t) ≤ f3(t) a.e.. Then a straightforward indu
-tion, applying (3.58), shows that {fn(t)} is a.e. in
reasing.For the rest of the proof, note that (3.63) implies (3.64). Inequality (3.63) 
anbe proved by indu
tion. Indeed, sin
e 0 = f1 ≤ f2(t) ≤ f0, and ∆(t, 0) = 0a.e. (
f. Remark 3.1), formula (3.63) is trivially veri�ed for n = 2. Let q ≥ 3
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ity Methods 93and suppose inequality (3.63) to be valid for n = 2, 3, ..., q − 1. If n = q in(3.62), then the positivity of a and 0 ≤ Λfq−1(t) ≤ Λfq(t) give
fq(t) ≤ f0 +

∫ t

0
Q(s, fq−1(s))ds+

+

∫ t

0

[
a

(
‖Λfq−1(s)‖ +

∫ s

0
∆(τ, fq−2(τ))dτ

)
− a (‖Λf0‖)

]
Λfq(s)ds.(6.10)A

ording to the indu
tion hypothesis, (3.63) holds true for n = q−1. Hen
e(3.64) is also valid for n = q − 1, as 
on
luded before. Then a(‖Λfq−1(s)‖ +∫ s

0 ∆(τ, fq−2(τ))dτ)) ≤ a (‖Λf0‖), be
ause a is non-de
reasing. As Λfq(s) ispositive, 
learly the integral term 
ontaining Λfq(s), in the r.h.s. of (6.10) isnegative. Then (3.63) be
omes true for n = q.e) Note that Q±(t, fn(t)) ∈ D(Γ), for a.e. t ≥ 0. Also, ΓQ±(·, fn(·)) ∈
L1

loc(R+;X+). Indeed, let T > 0 and gn,T ≥ fn(t) be as in a). If Γ is of typeD on D∞
+ (on D(Λ2) ∩ X+), then (3.36) and (3.41) give ‖ΓQ±(t, fn(t))‖ ≤

‖ΓQ±(t, gn,T )‖ ≤ ‖ΓQ−(t, gn,T )‖ ≤ a(‖gn,T ‖) ‖ΓΛgn,T ‖ for a.e. 0 ≤ t ≤ T .On the other hand, if Γ satis�es (3.46), then (3.41) implies
∥∥ΓQ+(t, fn(t))

∥∥ ≤
∥∥ΓQ−(t, fn(t))

∥∥ + ρΓ(‖Λ1gn,T ‖) ‖Γgn,T ‖ ≤

≤ a(‖gn,T ‖) ‖ΓΛgn,T‖ + ρΓ(‖Λ1gn,T‖) ‖Γgn,T‖ (0 ≤ t ≤ T a.e.).But (3.63) is of the form (3.37), and the above 
onsiderations show thatLemma 3.2 applies (with Γ instead of Λ). Hen
e,
‖Γfn(t)‖ +

∫ t

0
∆(s, fn−1(s); Γ, Q)ds ≤ ‖Γf0‖ (t ≥ 0, n ≥ 2). (6.11)Now the proof 
an be immediately 
on
luded: if n = 1, then formula (3.65)is trivially satis�ed; if n ≥ 2, then (3.65) is dire
tly implied by (6.11).To obtain (3.66) observe that Λ2 satis�es the 
onditions for Γ in e).f) First apply inequality (3.46) in (6.11). It follows that

‖Γfn(t)‖ ≤ ‖Γf0‖ +

∫ t

0
ρΓ(‖Λ1fn−1(s)‖) ‖Γfn−1(s)‖ ds (t ≥ 0, n ≥ 2).(6.12)But Λ1 satis�es the 
onditions of e) in the present lemma, hen
e ‖Λ1fn(t)‖ ≤

‖Λ1f0‖, t ≥ 0, n = 1, 2, ... . Introdu
ing the last inequality in (4.16), weobtain
‖Γfn(t)‖ ≤ ‖Γf0‖+ ρΓ(‖Λ1f0‖)

∫ t

0
‖Γfn−1(s)‖ ds (t ≥ 0, n ≥ 2). (6.13)
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e (3.67) is obviously satis�ed for n = 1, 2, a straightforward(Gronwall type) indu
tion in (6.13) 
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