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1. Introduction

Many nonlinear kinetic equations for complex systems appear as generaliza-
tion of the classical Boltzmann equation (see, e.g. [4]). The last years have
been marked by an increased interest in the mathematical properties of such
models. This can be explained by various applications not only in physics,
astrophysics and chemistry (e.g. studies of simple and complex/reacting flu-
ids, granular media, coagulation-fragmentation, formation of planetary rings,
galaxy collision) but also in modeling evolution processes in immunology,
traffic flow, communication networks, etc.

In many situations, the above equations are phenomenological or microscopic
models that describe the evolution of various populations (macroscopic sys-
tems) of many well individualized, objects (e.g. rarefied gas particles, cells
networks signals etc.) interacting among themselves. The interactions are
(localized) microscopic processes: a) any interaction has a very short du-
ration, with respect to the time-scale of the macroscopic evolution; b) the
number of partners of any interaction is very small, with respect to the total
number of the components of the population. Depending on the model, an in-
teraction may change the state, nature and/or the number of the participants
in interaction. This may result in modifications of the values of the physical
quantities characterizing the states of the interacting objects. However, such
modifications must be consistent with certain balance laws (e.g. conservation
/dissipation laws ) imposed by the peculiarities of the microscopic processes.

The problem of the existence and uniqueness of solutions of the above models
is not only of an academic interest. Indeed, good criteria for the existence of
general solutions and a detailed study of the properties of the solutions can
be particularly useful in obtaining effective convergent numerical schemes for
the models.

The above models present some mathematical properties, similar to those of
the classical Boltzmann equation, in particular similar monotonicity proper-
ties (with respect to the order). This made possible to extend nontrivially
monotonicity methods, initially introduced for the classical Boltzmann equa-
tion, [2] (see also [28]) to study these models [18], [27], [9], [7]- Recently
the ideas of |2] and [28]) have been reconsidered nontrivially within a more
general, abstract framework, [11], [12], [13]. The present work is a survey
of the recent progress in the domain, and includes five sections and an Ap-
pendix. This Introduction is the first Section. The next Section, is a brief
presentation, at formal level, of some relevant examples of Boltzmann models
for complex systems. In Section 3, we introduce a class of abstract evolution
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problems, as a generalization of the examples considered in Section 2. Then
we develop the general existence theory based on monotonicity arguments.
Section 4 is devoted to applications. Finally, Section 5 contains conclusions
and open problems.

2. Boltzmann-like kinetic models

In this section we present several nonlinear models with nonlinear singulari-
ties, that exhibit similar isotonicity properties. In very general terms, these
equations are essentially described by nonlinear evolution equations of the
form

S oarranf, >0 2.)

formulated in the positive cone of some suitable ordered function space X,
usually an ordered Banach space. The unknown f = f(t) characterizes the
state of the macroscopic system at time t. The two terms of the r.h.s. of
Eq.(2.1), Af (possibly A =0) and Q(t, f) describe the free motion and the
contribution of the interaction processes, respectively. From a mathematical
point of view, A is the generator of a evolution linear group in X, while
Q(t,-) is a nonlinear integral operator.

In many situations, we can write Q(¢,-) = Q1 (¢,) — Q™ (¢,-), where Q™ (t,")
and Q~(t,-) are positive and isotone with respect to the order of X. More-

over, QT (t,-) and Q (¢, -) satisfy certain relations -macroscopic balance laws-
determined by the microscopic balance properties.

In this work we are interested in solving the initial value problem (i.v.p.) for
Eq.(2.1), which can take various formulations, depending on the model.

2.1. Smoluchowski’s coagulation equation

Smoluchowski’s coagulation equation, [21, 25] (see also, e.g., [1], for a recent
review), describes the irreversible evolution of particles that may coalesce
into larger clusters. The continuous version of the Smoluchowski’s equation
reads

SF=QUn=Qr) - @ () 2.2)
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for the unknown f(t,y) > 0, the density of clusters of size y € Ry := [0, 00)
at time ¢ > 0. Here

+ 1 v
Q- (9)y) =35 /0 QY = Ve Y2)9(Y — Ys) 9 (Y5 ) Ay, (2.3)
Q@) = 9tw) | " 4,909y, (2.4)

with the (coagulation) kernel ¢ : Ry x Ry +— R, a symmetric, measurable
function.

We assume that there exist the constants ¢gg,¢1 > 0 and 0 < o < 3, such
that

a(y, ) < g0+ a1 (¥ y? +v%yY)  (y,y. > 0), (2.5)

where
a+ 0 <1, (2.6)

Condition (2.5) includes the case when either ¢g = 0 or ¢ = 0. Without
loss of generality, we can assume that ¢; > 0 (indeed the situation when ¢
is bounded by a constant can be considered as a particularization of (2.5) to
the case where ¢; > 0 and a = = 0).

The following property of the Smoluchowski’s model is essential for our anal-
ysis. Formally, if g,¢ : R4 — R are measurable, then

/OOO ¥(y) [QF (9)(y) — Qs (9)(w)] dy =

= %/000 /000 Dy, y=)a(y, y=)9() g (v )dydys, (2.7)

(provided that the integrals exist), where

V(Y yx) = Py +ys) — Y(y) — P(y«). (2.8)

Property (2.7) follows from the change of variables (y,y«) — (¥ — yx, yx) in
the first term of the L.h.s. of (2.7), and then applying Fubini’s theorem.

In particular, if ¢¥(y) =y in (2.7), then

/0  Qulg)w)ydy = 0. (2.9)

This gives formally the mass conservation for Eq. (2.2).
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Similar considerations as before can be made for the discrete version of the
Smoluchowski equation

j—1 00
¢ = %ZQj_hk(c(t)) =N Qike), (0) = >0 (G=1,2,..),
k=1 k=1

(2.10)
where Q; x(c) := q(k, j)cicj, is defined by the same symmetric coagulation
kernel introduced before, subject to (2.5), (2.6), and the component ¢;(t) > 0
of ¢(t) := (¢;(t)) is interpreted as the concentration of clusters of size j at
time ¢ > 0.

2.2. Povzner-like model with dissipative collisions

The model describes a rarefied mono-component fluid of particles of unit
mass, evolving in the free space with dissipative (conservative) binary colli-
sions, i.e., collisions resulting in the loss (conservation) of the kinetic energy
of the encounters.

According to the model, [7], the post-collision velocities v/, w’ are related to
the pre-collision velocities v and w by

v=v-(1-8m){v-—wnn w =w+(l-p8mn)(v—w,n)n, (2.11)

where (-,-) is the Euclidean product in R? and n € Q - the unit sphere in R3,
Here, 5: Q — [0,1/2) is a given measurable function. The total momentum
is conserved in collisions, v/ +w’ = v + w, but the kinetic energy is lost

V2w = v 4w = 28m)(1 - Bm) |[(v —w,n)?,  (2.12)

excepting the case 8 = 0, when the collisions become elastic.

For each fixed n € Q, the transformation R x R3 3 (v, w) — (v/,w') €
R? x R3 is invertible. The inversion formulae are

G=v— (Lﬂ(m) v —w,n)n, W% =w+ <1_7ﬂ(n)> (v — w,n)n.

1 —26(n) 1 —26(n)
(2.13)
Formally the above model reads
0
gif = v VRS Qi) —Qu(f) (2.14)

where f = f(t,x,v) is the one-particle distribution function, depending on
time ¢ > 0, position x €R3, and velocity v €R? of the so-called test particle,
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Q;{ and @), are the so-called nonlinear gain and loss operators, respectively,
and describe the influence of the collisions on the evolution of f. They are
formally given by

Q;( )(x,v) =
/ /QXR3 1 i ;’5_ ))>1‘:VP(T’ n)g(x,v)g(x +rn,w)dndw (2.15)

Q,(9)(x,v) = g(X,v)/0 dT/Qx]I@ |(n,v —w)|” P(r,n)g(x + rn, w)dndw,

(2.16)
respectively, where P : Ry X Q +— R, is a given measurable function with
P(r,n) = P(r,—n) assumed to satisfy

P(r,n) < cor? (r>0, n€), (2.17)

for some constants cg > 0, 0 < v < 1, and R > 0, specific to the collision
processes.

The basic property of the model is the formal identity

/]R3 Y(v) [QZIF(Q) -Qy (9)] dv =

~ WY
= / (v, w, v, w')MP(r, n)g(x,v)g(x +rn, w)dndvdw,
OxR3xR3

2
(2.18)
where 9 : R? — R and ¢ : R? x R? — R are measurable functions such that
(2.18) is well defined, and

(v, w, v, W) = (V) + (W) = p(v) — p(w), (2.19)

with v/ and w’ given by (2.11). We deduce easily (2.18), performing the
change of variable (v, w) — (0,) in the first term of the Lh.s (2.18).

If =0, then (2.14) yields a version of the so-called generalized Boltzmann
equation with binary elastic (conservative) collisions, analyzed in |3].

2.3. Povzner-like model with chemical reactions

We recall here a Povzner-like model with chemical reactions introduced in [8]
for a reacting gas mixture of N species A; and mass m;, 1 < i < N, without
interaction with photon fields. We assume binary reactions

Ai+Aj—>Ak+Al, 1<, 4, k, Il <N, (2.20)
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where case i = j = k = [ corresponds to non-reactive (elastic) processes.
According to the model of [8], for each species i, the gas particles have one
internal energy state, say E; > 0,1 < < N. It is assumed that the reactions
are consistent with the conservation of mass, momentum and total energy,
i.e., mj +mj = my +my, and m;v + m;w = myv’' + myw’, as well as

mp ’V/‘2 my ‘W/’2
+Ej=—1—+E+

v m P
milvP g mylwl my w'[?
2 2

E 2.21
2 2 + £y, ( )

where (v, w) are the pre-reaction velocities of the particles (4, 7) and (v/, w’)

are the post-reaction velocities of the particles (k,1)

The conservation relations give

/ /2 2

mpmy [V —w'|7 mym; |v —w]
2(my +ml) 2(mi +mj)

+Ei+Ej—E,—Ep = ty;;(v,w) (2.22)
and obviously, (2.20) occurs, provided that

thiij(v,w) > 0. (2.23)
It can be easily seen that (v/,w’) can be represented in terms of the pre-

reaction velocities (v, w) and of the unit vector n = (v
as

— W)V =W

, ‘ 91/2 (y \1/2
v = TV W 7 () thr,ij (v, W) = v i(v, W)
m; +mj my " (m; + m;)1/?
(2.24)
and
. , 91/2 1/2
w = TV W 3 i) tisig (V, w)'?0 = Wi (v, w,m)
m; + my my" (m; +m;j)1/?
(2.25)

It is convenient to extend the definitions of vy ;;(v, w,n) and wy ;;(v, w,n)

by setting N
m;v ij

Vil (Vs W, 1) = Wiy (v, W, n) = e (2.26)
whenever ty; ;;(v,w) < 0. By virtue of the above formulae one has
ViLij(V, W) = v (W, v,n) = wig (v, w, —n) (2.27)

and
Wiiii(V, W,n) = Wi (W, v,n) = vy (v, w, —n). (2.28)
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Each species 1 <+¢ < N is described by the one-particle distribution function
fi = fi(t,x,v) depending on time ¢ > 0, position x and velocity v.

Assuming molecular chaos and (instant) point localized reactions, the kinetic
model is derived following the original argument for the classical Boltzmann
equation. The obtained model reads, (8],

9
ot
where f = (f1,..., fn) and, formally,

Qi (9)(x,v) =

fi=—v - Vxfi+Q(f) = Q7 (f), 1<i<N, (2.29)

=D

N
Jokl

/ pkl,ij (y7 VvV, W, n)gk (t7 X, Vkl,ij)gl (tu X+ Y, Wkl,z])dyden7
— 1 JRIXR3xS?
(2.30)

Qi (9)(x,v) =

- >

N
/ ki (¥, V,W,n)g;(t,x,v)g;(t,x +y,w)dydwdn. (2.31)
=1 R3xR3x0

Here, g == (g1,...gx) with g; : R3 x R® — R,, Q := {n € R® : |n| =
1, gk (s VeLig) = k(s VeLii (Vs W), (s Wiig) = qi(c - Wi i5(v, w,m)).
Moreover, pgiij, kiij - R3xR3xR3x Q) — [0,00), are given measurable maps
with the property that if (v, w) & Dj;jx = {(v,w) € R3 xR : t;; (v, w) >
0}, then

pkl,ij(Y7 vV, w,n) = rkl,ij(yv v,w,n) =0. (2.32)

One assumes that the following properties are satisfied a.e.:
pkl,ij(Y7 vV, W, n) = Tkl,ij (y7 V,wW, n) =0 (y > R)7 (233)

pkl,ij(Y7 Vv, W, n) = pkl,ij(_Y7 Vv, W, n)7

rk:l,ij(Y7V7W7n) = Tkl,ij(_yavuw7n)7 (234)
pkl,ij(Y7 VvV, W, l’l) = pkl,ji(Y7 W, V, l’l) = plk,ij(Y7 VvV, W, —Il), (235)
Tk, (Y, V, W, ) = 71 55(y, W, v, n) = 1y, (y, v, W, —n). (2.36)

Moreover,

/ O(v, W)Dk1,i5 (¥, V, W, 0) (Vi ij, Wiy i5)dvdwdn =
R3xR3xQ
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= / ©(Vijkl, Wijkt)Tij,k1 (Y, V, W, n) (v, w)dvdwdn (2.37)
R3xR3x)

for all (1, ¢) : R3xR3 — R, provided that whichever side of (2.37) is defined.

The kernels prg i, Thiij R3 x R3 x 2 — [0,00) carry the information of the
reaction processes. For a gas composed by one species of particles with elastic
collisions, the above system of equations reduces to the so-called generalized
Boltzmann equation.

Our main hypothesis is as follows:

Assumption 2.1 There exist constants cq > 0 and 0 < g < 1 such that

q
/ k15 (y, v, w,n)dn < ¢4 [1 + |V|2 + |w|2 . (2.38)
Q

Observe that since 7y ;; and py;; are related by (2.37), then the above
hypothesis is also an implicit condition on py ;.

Under Assumption (2.38), one can show that, at least, formally,

N
x X, v) — Q). X,V)|h; (X, v)dvdx =
5 [, 0700 Qg vl viiva

N

1

=1 E /D[pkl,ij()’7vaw7n)gk (X, Vitij) g1 (X + Y, Wiiij)
7:7j7k7l:1

—7,i5 (¥, vV, W, n)g; (x,V)gj (x + y, w)]
X[hi(x,v) + hj(x +y, W) — hi(X, Viij) — hi(x +y, Wi i) dxdydvdwdn
(2.39)
for all g—(g1,...gn) and h—(hq,...hn), with g;, h; > 0, for which the integrals
are defined. Here, D := R? x R3 x R? x R? x Q. The last property follows
by applying (2.27), (2.28), (2.32) (2.37), as well as the invariance properties
of the sums in (2.39), with respect to the change of variables (x,y,n) —

(x',y’,n') :== (x +y,—y,—n), and a suitable interchanges of summation
indices.

At least, at formal level, property (2.39) implies the bulk conservation for
mass, momentum, and total energy,

N N
> / U (x, v) fi(t, %, v)dxdv = Y / U9 (x,v) £:(0, x, v)dxdv
i—1 Y R3xR3 =7 JR3xR?

(2.40)
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(0 < j <4), where f;(t) are the components of the solution f of Eq. (2.29),
and

\I/Z(O)(x, V) = my, \1'2(4)(x,v) =m; |v|2 /2+ E;, \I'Z(.j)(x, V) 1= mv;
(2.41)
(7 =1,2,3), with v; are the components of v.

2.4. A model with inelastic collisions and chemical reactions

In this example, we consider an abstract system of a Boltzmann-like phe-
nomenological equations, [9, 10, 14], for a multi-component reacting gas
of particles with internal states and discrete values of the internal energy.
Thinking a real gas mixture of particles with internal structure as a mixture
of several chemical species of mass points with unique internal state, one can
assume that any gas particle of the model has only one internal state. Specif-
ically, the model refers to a gas consisting of N chemical species. A particle
of species n = 1,2, ..., N is characterized by mass m,, > 0 and internal energy
FE,. Without loss of generality, one can assume that F, >0, 1 <n < N.
It is assumed that the chemical reactions are induced by inelastic (possibly)
multi-body, instant collisions. A reaction is identified with a couple («, 3) €
M x M, where M := {y = (7n)1<n<n | 7n € {0,1,..., K}} is a multi-index
set. Here a = (aq,...,ay) € M and 8 = (,...,0n) € M designate the
pre-collision and post-collision channels, respectively, with 0 < ay,, 6, < K
participants of species n; 1 < n < N. Any couple of the form (v,v) € MxM
is identified with a multi-body elastic collision with ~,, collision partners of
species n; 1 < n < N. The number of particles in some channel v € M is
lv] == Zfil ~i;. The family of chemical species participating in channel = is
denoted by N'(y) :=={i:v; >0,1<i< N}.

Let M., V,(w) and W, (w) denote the total mass, velocity of the mass center
and total energy, respectively, for the particles in channel v, i.e.,

N
My =Y yimi, (2.42)
i=1
1 Vi
V»Y(W) = ﬁ Z Zmiwi7j, (2.43)
VieN(y) j=1

Vi
Wo(w) = > > 2 'miw; + Ey), (2.44)

iEN(7) j=1
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where W = ((Wgi)ie{1,....ax} ke’ (y) TePresents the ensemble of velocities of
the particles in channel «. Then, the kinetic energy of the particles (with
velocities w) in channel ~, relative to the frame of the mass center, reads

Wirq(w) = Wy (w) — My Vo) V Z’)’z i (2.45)

Obviously, W, ,(w) > 0.
A gas reaction (a, 3) may take place only if it is consistent with the conser-

vation of mass, momentum and energy, i.e.,

M, = Mgz, Vy(w)=Vg(u), Wy(w)=Ws(u). (2.46)

We will assume here that elastic collisions are always present. Therefore, the
set Cpr := {(a, B) € M x M : M, = Mg} is nonempty.

The Boltzmann-like system of equations for the above model is

0 _
ofi = QF (N = Q7 (f). (247)

Here the unknown f; : R; x R3 — R, is the one particle distribution func-
tions f; = fi(t,v) (t-time, v-velocity) of the particles of species 1 < i < N.
In Eq. (2.47), QF (f) and Q; (f), with f := (f1,..., fn), are the so-called
loss and gain (nonlinear) operators for the particles of species i, respectively.
Formally,

Z & / [pﬁ,a(w,n)(gﬁ OU5,a)(W,n)] dw;dn,

a,BeM 3l 3% 02 Wi, =V

(2.48)

Z @ / [Tﬁ7a(W,n)9a(W)]Wm L,dwidn,  (2.49)
OC,BEM

R3|a\—3XQB

where

Vi
IT TToitwis), veMm, (2.50)

iEN(v) j=1

(1, is the unit sphere in R3=3 with v € M, and dw; is the Euclidean ele-
ment of area on {w eR3lel | Wi, = v}. Here, the functions ug ,, € C(R?"a‘ X
QQ;R?"B‘), and the measurable functions rg .. pga : R3lol Qg — R are
given.
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The following conditions are assumed (]9, 11, 14]):
(B1) r8,0 = PBo = O unless: |a] > 2, [8] > 2, (o, ) € Cpr, and w € D;a =

{Wl € R3\a| : W,«,a(W/) + g:(oéz - ﬁZ)EZ 2 0}.
i=1

(B2) For each i € N(«) fixed, pgo(w,n), rgo(w,n), and ug,(w) are in-
variant with respect to the interchange of the components w;1,...,w; o, of
w.

(Bs) If (o, 8) € Cpp, W € DEQ, then
(Vﬁ °© uﬁﬂ)(wv n) = Va(W), (Wﬁ o uﬁﬂ)(wv n) = Wa(w)v (2-51)

for all n € Qg, and

/ Pg,a(W,n)p(w,n)(1 oug,)(w,n)dwdn =
R3lalx Qg

_ / Fous(W,m)( 0 U g) (W, ) (w, m)dwdn,  (2.52)
R3I8I x Qg

for all » : R3lel — R and ¢ : R3Al — R, for which the integrals are well
defined.

We suppose that the reactions are reversible, i.e., if 75 o # 0 for some («, 3),
then also ro g # 0.

From (3.9), it follows that pg o and 73 , are related one to another. Indeed, a
more explicit relationship between pg, and rg, can be derived, as it results
from a general example constructed in |9, 14]. Note also here that if one
assumes a mono-component gas of particles with binary elastic collisions
(ie, N=1, K =2, and pgo = rgo = 0 unless a« = § = (1,1)), then Eq.
(2.47) reduces to the space homogeneous classical Boltzmann equation

0 _
Sr=Qrn-@ ), (2.53)
where
Q (N)(v) = / o(v, w,n) f(v') f(w')dwn, (2.54)
R3xQ
QO (H)(v) = / o(v, w,n) f(v) f(w)dwdn. (2.55)

R3xQ
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The notations are f = f(¢,v) the one-particle distribution function, v/ =
v—(v—w,n)n, w =w+ (v—w,n)n, and n € Q — the unit sphere in
R3. Here, the Boltzmann collision law ¢ is a positive measurable function
(depending, in our case, on v and w through the variable v — w).

The last condition of the model concerns the behavior of 75, (see [9]):

Assumption 2.2 There are some constants 0 < g <1 and ¢4 > 0 such that

vga(W) = /Q rgo(W,n)dn < ¢y (1 4+ Weo(w))? (we R ae), (2.56)
B

for all o, B € M.

Obviously, v q(w) = 0, unless (a, 3) € Cas.
A consequence of (By), (B2) and (2.56) is the key equality

N
> [ meiem - @wlav=0 0<jy, (@)
=1

for all g = (g1, ..., gn) with (1+|v|})*2g; € LY (R3;dv), i = 1,2, ..., N. Here,

\I/(O)(v) = my, \IJE4)(V) = %mi v|* + E;, \I'Z(])(v) =mv; (1 <i<N),
(2.58)

where v; is the j-component, j = 1,2,3, of v. Equality (2.57) implies, at lest

formally, the bulk conservation of mass, momentum and total energy.

2.5. A nonlinear von Neumann-Boltzmann equation

Besides classical models, we can also consider "quantum" kinetic models with
monotonicity properties similar to classical ones.

Let X = 7(H) be the space of trace class selfadjoint operators in some
separable Hilbert space H. On X, we consider the order FF < G iff (f, Ff) <
(f,Gf),¥Yf € D(F)ND(G). Let |F|| := Tr(|F|) be the norm on X.

For some orthogonal base {eg,e1,...} C H, define the selfadjoint operator

H=>" e )e;, (2.59)

1>0
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where {pin}n C R. Let {U'}icr denote the continuous group of positive
isometries on X, given by U!(F) := exp(—iHt)F exp(iHt), i = /—1. Con-
sider a second sequence, 0 < Mg < A1 < Ao < o A1 < Ay ... S 00, as

n — o0o. Let {Vt}po be the Cy semigroup on X, defined by

(€5, VI(F)ej) o= (VH(F))iy = exp[—(1+ Xidi )] Fy 5 (2.60)
where F;; := (e;, Fej), and let the infinitesimal generator of {Vt}t>0 be
denoted by (—A). Then -

(M) (F) := (1 + Xidij) Fij, (2.61)
hence A > I. Clearly, U! leaves D(A) N X invariant and U'A = AU! on
D(A) N X4

Now we can consider the following example of nonlinear von Neumann-
Boltzmann equation X (see also [12]):

i—lz +i[H, F] = QT (F) — Q™ (F) (2.62)

with Q* : D(A) C X — X given by

2
Q™ (F) = FooTe(AF)(D_ Py, (2.63)
i=0
and
QY (F):=Q(F)+ L(F), (2.64)
where P; := (e;,-)e; and
2
L(F) := FooTe(AF) (Y i P). (2.65)
i=0

Here, ¢ = E()\l — )\0)_1 ()\2 — )\0)_1, €1 = —E()\l — )\0)_1 ()\2 — )\1)_1, g9 =
M2 — X)) T2 =) tand 0 < e < (Mg — A1) (Mo — A2). Thus QF are
positive operators, and a simple computation gives

TrQ1(F) = TrQ™ (F) (2.66)
for 0 < F € D(A), and
Te(AQ™)(F) = Tr(AQ™)(F) (2.67)

for 0 < F € D(A?), so that both TrF(¢) and Tr(AF)(t) remain constant with
time.
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3. General theory

3.1. A monotonicity result for the classical Boltzmann equa-
tion

Before proceeding to a more general analysis, we start with a relevant exam-
ple - the Arkeryd’s monotonicity result for the Boltzmann equation ([2]).

Specifically, in [2], the main interest is to solve the Cauchy problem for the
space homogeneous Boltzmann equation (2.47) in the positive cone L}F of

L' = LY(R3,dv), namely

CF=QU=Q N -Q (), FO)=foz0(>0) (31

with Q¥ defined by (2.54) and (2.55), respectively.
The basic hypothesis is that the collision kernel ¢ satisfies

q(v,w,m) < Cy(1+ [v[* + [wl') (0<A<2), (3.2)

for some constant Cy > 0. The initial data fj is supposed to satisfy (at least)
the condition of finite mass and energy, i.e. || fo|, < oo, where

2\ L
loll o= [ (4 v lg(v)] dv. (3.3)
Unfortunately, under condition (3.2), the operators QT are too singular to
allow for applying general methods to the above problem. The idea of [2]

is to approximate QT by collision-like operators Q. with bounded (hence
simpler) kernels g, (v, w) := min{q(v,w),m}, m =1,2,... .

Thus one starts by solving the simple model

P = QN = QhN - Qul), FO=fo(t20. (39

Note that, since (3.4) is a Boltzmann-type equation, then for "many" g € L',
[ #Qnigav=o (35

where po(v) = 1, ¢;i(v) = vi , i = 1,2,3, o4(v) = |[v]>. An immediate
consequence is that for any solution f = f(¢,v) of (3.4),

1£@®llo = llfollg (¢ > 0). (3.6)
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Moreover, if also || f(t)|l, < oo, then

£ @)z = 1l foll, - (3.7)

Writing the solution of (3.4) as f,,, one could hope that if m — oo, then
fm converges somehow to a solution of the original problem (3.1). Another
key point in the analysis is to use the above equalities as a priori estimates
in order to replace (3.4) with other (somehow equivalent) equations, more
suitable for monotone iteration with respect to the natural order of L.

Thus, one can first prove the following result (|2]).

PROPOSITION 3.1 There exists a unique non-negative solution f,(t,v) € L
of (3.4) for every 0 < fo € L.

Proof. By (3.6), the positive solutions (in L!) of (3.4) are exactly the positive
solutions of the equation

SFCUlyf = Qu(H)+ CIFWl f. FO) =fo (20, (39

which satisfy equality (3.6). Here C' > 0 is some constant. Let v(t) :=
exp(—C [|folly ). Since the operators Q% are locally Lipschitz in L, (3.8)
has a unique local solution f,,,(t), which is also a unique local solution to the
mild equation

f(t) = o) fo+ /0 v(t = 8)[Qm(f)(s) + Cllf(s)llg £(s)]ds. (3.9)

Define the sequence {f;,}, by

f=0, fo=0vt)fo+ /0 v(t = 8)[Q@m(fm)(s) + Cll fm(s)llo frm(s)]ds.
(3.10)

If C' is sufficiently large, then the operator X 3 g — Qn(g) + Clgllp9 € X
is positive. Then the sequence {f7(¢)}, is positive and increasing in L!. A
simple induction, making use of (3.5), gives [|f}1(t)ll; < |l follp- Then by
the monotone completeness of L' (Levi’s theorem) {f2(t)}, is convergent,
its limit ¢ (t) satisfies (3.9), and ||gm (¢)|ly < |/ follo- But by virtue of the
uniqueness of the aforementioned local solution f,,(¢) (of both (3.8) and
(3.9)), clearly g (t) = fim(t) > 0 for ¢ small enough. Moreover, g (¢) extends

fm(t), as the unique solution of (3.8), for all ¢ > 0. It remains to show that
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this solution satisfies (3.6). To this end, one integrates (3.8), with f,, as
solution, and rearrange conveniently the resulting expression as

fon+ /0 Qo) (8) + C [ follg Finls)]ds =

= ot /0 Q) (5) + C 1 fn(S) g Fim()]dls. (3.11)

As f(t), QE(fm)(t) > 0, invoking the additivity of the L' norm, and the
property || fm(t)|log < || follp, one finally obtains

t
0 < [l follo = l[fm(®)llg < C HfoHo/O (I follg = [[fm(s)llo)ds. (3.12)
Thus by Gronwall’s inequality,

[ fm(@®llg = l[follg, (£=0) (3.13)

so the proof is concluded. O

An induction involving (3.10), and making use of (3.5) also shows (|2]) that
if f,, is as in Prop. 3.1, and (14 |v|?)fo € L', then (1 + |v|*)fm € L', and

[ fm (@)l = [[folla (= 0). (3.14)

Another important property is the following estimation, uniform with respect
to m (see [2]): for any t. > 0,

[fm @l < Kl foll,  (0<t<t), =4, (3.15)

for some number 0 < K = K(t4, | folly,Cq,1). The proof (see the slightly
more general Prop. 1.3 of [2]) is inductive, and applies (3.10) and the basic
inequality

L0+ M Qufuay <

< gcqﬂl[ufm(t)”pr,\—e [ fm @)l + 1 fm@lli_g 1 fm )l xs0 (3.16)

valid for some 3 > 0 and for any 0 < 6 < 2. Inequality (3.16) follows (see,
e.g., [2]) from an elementary inequality due to Povzner, [23], and will be also
called Povzner inequality?.

One can prove that f,, converges to a solution of (3.1), under a stronger
condition on fy than in Prop. 3.1. Indeed, one has ([2])

2Povzner-like inequalities can be also proved for the models presented in the
previous sections.
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ProrosiTiON 3.2 If || fol|, < oo for some | > 4, then there exists a unique
solution f > 0 of problem (3.1) such that (1 + |v|')f(t) € L'. Moreover,
If@®)lls = llfolls (t > 0), and for any t, > 0, there is some number K =
K(tar ol 1) such that | £(0)), < K o, (0 <1t < 1)

Proof. Consider the equation,
d
/T =Qm(f), £(0)=fo(t=0), (3.17)

where h(v) == C(1+ [v[*) [ fo(v)]l, and Q%,(f) := Qm + hf.
If f,, is as in Prop. 3.1, but fy is as in Prop. 3.2, then f,, is also the unique
positive solution of Eq. (3.17), which satisfies (3.14). Further, consider

S FEhT = Q). F(0) = fo (+20), (3.18)
where Q% (f) = Qi(f) = Q~(f) + h.

Let V(t) := exp(—th). One can introduce recurrences similar to (3.10),

~, . ~ . t . ~ .
fit =0, fattt =V () fo +/ V(t—s)Qn(fr")(s)ds (n=1); i=a,b.
0
(3.19)
Under condition (3.2), if C' > 0 is sufficiently large, the operators Q! are

positive and isotone so that the sequences {J/”;,;m(t)} are positive and in-
n

creasing (i = a,b). Moreover, if 0 < (1+ |v|?)g € L', then Q% (g) > QP (g)
and Q% (g) > Q?(g) for all m, 0 < j < m. Using the above properties, one
finds by induction that

0< 5" < () < Frot) < ful); 0<j<m. (3.20)

Hence, the increasing sequences {J/”;,;m(t)} are convergent. Note that if
n

—~nb
we set f2(t) := limy oo fm (), then 0 < f2(t) < f5(t) < fm(t); 0 <
j <m. Then {f,lq’l(t)}n is increasing and Hffn(t)Hz < || folly, hence {fﬁl(t)}n
converges to some limit f(t), as m — oo, and

LF @2 < [ folly- (3.21)

Moreover,

%erhf:Q(f)Jrhf (3.22)
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and, by (3.15)

IF@Ol; < Kllfoll; (0<t<te), 1 >4 (3.23)

Thus f is a solution of (3.1) if there is equality in (3.21). This can be proved
by estimating s, := fm — f5(t). Indeed, as f,, is the solution of (3.17),
(3.18), one can write

%Sm + hsm = Qi (fm) = Qo (f1n)- (3.24)

A short computation, which takes advantage that s,, is non-negative, and
applies (3.23), gives (under hypothesis (3.2))

(@)l < €K [folly sup lsun(s)l; +o(1) (3.25)

as m — oo (with C' > 0 sufficiently large, and K, t, as in (3.23)).

Then for ¢ sufficiently small, |[s,,(t)||, — 0 as m — oo, hence [|f(t)|l, =
limm oo || £ ()|, = limm—oo [ fm ()2 = [ foll,-
To prove the uniqueness part of the proposition, observe that if g > 0 satisfies

Eq. (3.1), and if || g(t)||, < oo, then [|g(t)]|, = || foll,- But g also satisfies the
mild form of (3.22). Then g > f, by the construction of f. O

Variants of Arkeryd’s monotonicity argument were successfully applied to
other models close to the classical Boltzmann equation, [18], [27], [9], [7].
Thus, developing the above line of reasoning within a more general framework
has become a tempting task. But this is not trivial, and requires new ideas (as
will be seen in this section). Indeed, for instance, too key issues of Arkeryd’s
analysis seem rather specific to the model considered in [2|: a) choice of a
priori estimates; b) construction of suitable regular operator approximations
of the Boltzmann collision operators.

3.2. An abstract model

We begin with some terminology and facts related to Banach lattices (|17,
24]).

The frame of our analysis is a separable AL-space X with norm ||-||, order
<, and positive cone X . We recall that an (AL) space, is a Banach lattice
whose norm satisfies

lg+nhll=lgll+lnll (g9, € X). (3.26)
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As X is an AL-space, if h : R — X is Bochner integrable, then property

(3.26) gives
H/Sh(s)ds Z/SHh(S)Hds (3.27)

for any measurable set S of R, the integral being in the sense of Lebesgue.

Examples of AL-spaces are L'-real and the real subspace of self-adjoint trace-

class operators (with trace norm)?.

Related to the order of X, we shall also use the standard notations (g >
h)e(h < g), as well as (9 < h)<(h > g)<(g < h and g # h). AL-spaces
are monotone complete, in the sense that any increasing (i.e., directed <)
norm-bounded family converges. The norm of an AL-space is order contin-
uwous, i.e., any directed > filters that converges to 0 is also norm convergent
to0. Amap ' : D(T') C X — X, with D(T') N X4 # 0, is called positive
(strictly positive) if 0 < T'g for 0 < g € D(I') (if 0 < I'g for 0 < g € D(I)).
Further, I' : D(T') C X — X is called isotone (strictly isotone) if T'g < T'h,
whenever g < h (if T'g < Th, whenever g < h), g,h € D(I'). Obviously,
ifI': DI') € X — X is isotone, 0 € D(I") and 0 < I'(0), then I' is posi-
tive. We say that a subset M C X is p-saturated (positively saturated) if
MNX, #0, and from 0 < g < h € M, it follows that g € M. An operator
I': D) C X — X will be called o-closed (closed with respect to the or-
der) if for any increasing sequence {g,} C D(I') such that {g,} is increasing
and convergent (in symbols, ) to some g, and {T'g,} is Cauchy, one has
g € D(I') and lim,,_,o, I'g,, = T'g. Clearly, any closed mapping is o-closed.

We recall (see, e.g., [16]) that if I' : D(I') € X — X is a closed linear
operator, then

F/Sh(s)ds = /th(s)ds. (3.28)

for any function A Bochner integrable on some measurable set S € R, with
values in D(T'), and such that 'k is Bochner integrable.

We recall that a positive Cy semigroup on X is a Cj semigroup of posi-
tive linear operators on X. If {St}tzo is a positive Cy semigroup on X,
then its infinitesimal generator G is densely defined and closed (as the in-
finitesimal generator of a Cy semigroup). Moreover, G¥ is densely defined
and closed, £ = 2,3,... . Additional useful properties are collected in the

following lemma.

Let I denote the identity on X. Set DX(G) := N, D(GF) N X.

3 Actually, according to Kakutani’s theorem, [24], every AL-space is isometrically
isomorphic (as an ordered vector space) to a space of type L!.
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LemmA 3.1 ([11])
a) The sets D(G*)N X4, k=1,2,..., and D°(G) are dense in X.
b) Suppose that there is some number v > 0 such that

(G+~4D)g<0 (ge€DG)NXy,). (3.29)

Then D(GF) N Xy, k=1,2,..., and DX(G) are p-saturated. Moreover, for
any h € X4,
0 < S'h <exp(—t)h (t>0), (3.30)

and there is an increasing sequence {hy,} C D°, such that h,, /" h asn — co.

Motivated by the examples of the previous section, it is of interest to consider
the following abstract i.v.p., [11],

df _

= et = QT f)-Q(t.f), f(0)=foeXy (t>0), (3.31)
formulated in X; (the particular autonomous case is not excluded).
In Eq. (3.31), Q" and Q~ are mappings defined from Ry x D to X, for some
D C X such that DN X is dense in X.

The following properties are assumed for Q*:
a) For a.e. t > 0, the operators QT (¢,-) : D — X are positive and isotone.

b) The mappings Ry > t — Q*(t,g(t)) € X, are measurable for any
Lebesgue measurable function g : Ry +— X that satisfies g(t) € DN Xy
a.e. on R,.

¢) For a.e. t > 0, the operators Q¥ (t,-) are o-closed and their common
domain D is p-saturated.

We are interested in the existence and uniqueness of positive (i.e., in X )
strong solutions of Eq. (3.31) under additional hypotheses which abstract
further properties of the Boltzmann model.

We recall that a function f: Ry +— X is a strong solution of Eq. (3.31), if it
is absolutely continuous on R, differentiable a.e. on R, satisfies Eq. (3.31)
a.e. on Ry, and verifies the initial condition. Equivalently, f is a strong
solution of problem (3.31) if it is solution of the integral equation

) = fo+ /0 Q(s, f(s))ds (t>0), (3.32)

where the integral is in the sense of Bochner.
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We also consider the following problem related to Eq. (3.31)

S oarrQ), 10)=foe X, (t>0), (3.3

with @ as in Eq. (3.31). Here A is the infinitesimal generator of a Cy group
of positive linear isometries on X, which commutes with A.

We are interested in the existence and uniqueness of mild solutions of Eq.
(3.31) in X, i.e, solutions of the integral equation

ﬂﬂzwh+AU*@@J®ﬁ8@zm (3.34)

in X4, where {U’f}te]R is the Cy group of positive linear isometries on X,
generated by A (the integral is in the sense of Bochner).

As the above model is still too general for developing an existence theory of
solutions, additional hypotheses are needed. The examples of the previous
section suggest to assume some sort of dissipation (conservation) property,
[11]. This claims the existence of a positive, densely defined, closed linear
operator A : D(A) C X +— X such that, for any positive solution f(t) €
D(A?) of Eq. (3.31), the quantity ||Af(t)| is dissipated (conserved), i.e., is
decreasing (constant) in ¢, and HA2f(t)H is locally bounded in ¢. The "law
of decrease" of ||Af(t)|| can be used as a "natural" a priori estimate*. In
particular,

[Af@OI < [[Afll (& =0). (3.35)

To be precise, we introduce the following "dissipation" property (|11]). Let
M be a subset of DN X dense in X.

DerINITION 3.1 ([11]) A closed positive linear operator T' : D(T') C X
X is called of type D on M (with respect to Eq. (3.31)) if M CD(T),
QT (t, M) Cc D(T') a.e. on Ry, and for any g € M,

0<AlgT,Q) =|IQ (g — |TQRT(tg)| E>0 ae). (3.36)

If I' is of type D on M, then the following property can be easily established
by making use of (3.27) and (3.28).

LEMMA 3.2 ([11]) Let go, g(t), h(t) € M, t > 0 a.e., with QF(-,h(-)),
LQ™(,h(-) € Ljy(Ry; X4), and

gw§%+é@@mw®<uw» (3.37)

4This can take various forms in applications, depending on the form of A and
@, e.g., conservation energy, in the case of the model of [2].
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Then
t
ITg(t)] + /0 As,h(s):T,Q)ds < [ITgoll (2 0).  (3.38)

Moreover, (3.38) holds with equality sign for any t > 0, provided that there
is equality in (3.37) for all t > 0.

On the other hand, in determining the behavior of HA2f(t)H, a major role ap-
pears to be played by the Povzner inequality (3.16). This has to be somehow
included in the model.

Now we are in position to complete the setting of Eq. (3.31) with additional
hypotheses, making more precise the above considerations.

Specifically, we assume that there is a linear operator A : D(A) C X — X,
with D(A) € D and QT (t, D(AF)NX ;) Cc D(A* 1), t > 0ae., k=2,3, such
that:

(Ag) The operator (—A) is the infinitesimal generator of a Cjy semigroup of
positive linear operators on X, and there is a number \y > 0 such that

(A=Xol)g >0 (g€ D) NXy). (3.39)

(A1) Forae. t >0,
Alt,g) = At,g;A,Q) >0 (g€ D(A*)NX,), (3.40)
and the map D(A?) N Xy > g+— A(t,g) € R, is isotone.
(A2) There exists a non-decreasing convex function a : Ry +— R, such that
a(lAglDAg = Q7 (t,9) 20, (g€ D(A)NXy, t>ae), (341)

and for a.e. t > 0, the map D(A)N Xy 3 g — a(||Ag||)Ag — Q (t, 9)
€ X is isotone.

(A3) There exists a non-decreasing function p : Ry — R4, and there is an
operator Ay : D(A;) C X — X of type D on D(A?) N X, such that

~A(tg: A% Q) < plllAgl) A% (9 € DA N Xy, t> 0 ace).
(3.42)

Some remarks are in order.

First, observe that if g € D(A?) N X, then by (3.39), (3.40) and (3.41) we
have the simple inequalities

gl < Aot [Agll < Ag % ||A%g]| (3.43)
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and
1Q*(t g)|| < AT JAQT (1 9)|| < A [|AQ™ (£, 9)|| <
< a(||Ag||))\a1 HAng < a()\gl HA2gH))\61 HAQQH (t>0 a.e), (3.44)

with the following obvious consequences.

REMARK 3.1 Q*(¢,0) =0 and A(t,0) =0 a.e. on Ry.

Let AO:=1.

REMARK 3.2 If g : Ry — X, is measurable, with g(t) € D(A?), t >
0, a.e., and ‘AQQH € L (Ry), then g, AFlg and A*Q* (-, g(+)) are in
Llloc(R+;X+)’ k= 0, 1.

Lemma 3.1a) and (Ag) imply that D(A*) N Xy, k = 1,2,..., and DY =
D(A) are p-saturated and dense in X. Obviously, (3.39) shows that A is
positive. Thus, by (3.40), the operator A is of type D on D(A?) N X . This
has the following important consequence.
I (1) € D(AY), £ > 0, e, and if Q*(, f()), AQ*(, /() € LMRy; Xy),
then by (3.38), applied with equality sign,

[Af@)]] +/0 A(s, f(s))ds = [|Afoll (£ =0). (3.45)

Thus ||[Af(t)]] is decreasing in time and satisfies (3.35). In particular, if
A(t,g) =0 for all g € D(A®2)N X1, t >0 a.e., then |[Af(t)|| is conserved for
all ¢ > 0.

Observe that inequality (3.42) is of the form
AT, Q) < pr(lAgl) ITgll (9 € My, t =0 ae), (3.46)

where I' : D(I') C X +— X is some positive linear operator, and My C D(T')N
D(A?) N X, is such that Q*(t, M;) C D('), t > 0 a.e., while pr : R, +— R,
is some non-decreasing function.

Formula (3.45) generalizes a priori estimates introduced in e.g., [2, 7, 8, 9, 27].

Formula (3.46) can be regarded as an abstract correspondent to the Povzner
inequality, [2, 23].

We finally remark that the above setting does not exclude the case A} = A
when, obviously, some of the above conditions become redundant.
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3.3. General results on the existence of solutions

We are now in position to state some results ([11], [13]) on the existence
of solutions to our abstract model. The proofs will be sketches in the next
subsection (for more details, the reader is referred to [11] and [13]). First we
consider problem (3.31).

THEOREM 3.1 Let either of the following two sets of conditions be fulfilled:

a) QT (t,D¥) C DX, t >0 a.e., A*QT (-, D¥) C L (Ry; X4 ), k=1,2,....
In problem (3.31), fo € D(A%) N X,.

b) The operators Q* do not depend explicitly on t. In problem (3.31), fo €
D(A3) N X .

Then there exists a unique positive strong solution of the i.v.p. (3.31) such

that f(t) € D(A?) for any t >0, and |[A%f(-)| is locally bounded on R.
Moreover, f,Af € C(Ry; Xy). Furthermore, f satisfies Eq. (3.45) and

[A2F(@®)]] < exp(p(|ALfolDt) [|A%fol| (¢ > 0). (3.47)

Note here that Theorem 3.1a) is also applicable to the autonomous case, but,
clearly, its conditions are different from those of Theorem 3.1b).

Theorem 3.1 has an immediate noticeable consequence, as follows:

Consider Eq. (4.22) and let {Ut}te]R be the Cy group of positive linear
isometries on X, generated by A.

If f is a solution of (3.34), then setting F(t) := U~ f(t) in (3.34), we get

Flt) = fo+ /O Quis, F(s)ds (£ >0), (3.48)

hence, by differentiation,

d _
&F =Qu(t, F) = Q;(tF)_QU(tvF)v FO)=fo (t=0 ae.), (3.49)
where Qu(t,-) := U™'Q(t,U") and Q[i](t, D= UtQ* (L, U).

Suppose that U'D(A) = D(A) and U'A = AU' on D(A) for every ¢t > 0.
Also, let U'D(A1) = D(A1) and U'A; = A U? on D(A;) for all ¢ > 0.

Now Q[j; and Qu are well defined as maps from Ry x D(A) to X, the last

equation is of the form (3.31), and we can state the following consequence
(|11]) of Theorem 3.1a):
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COROLLARY 3.1 Let QT(t,D¥) C D, t > 0 a.e., and A*QT(,Ug) €
L}OC(R+;X+) forall g € D, k = 1,2,... . Suppose that fy € D(A%) N X,
in (4.22). Then problem (4.22) has a unique positive mild solution f such
that f(t) € D(A?) for any t > 0 and ||A?f(-)|| is locally bounded on R
Moreover, f,Af € C(Ry; X1). Furthermore, f satisfies (3.45) and (3.47).

The following result, [13], extends the existence of strong solutions of Eq.
(3.31) to the case of initial datum fo € D(A) N X (instead of D(A%) N X,
as assumed in Theorem 3.1).

THEOREM 3.2 Under the assumptions of Theorem 3.1a) on A and QF, let
fo € DIAN) N X, in Eq. (3.31). Then there exists a strong solution, f €
C([0,00); X)), of the i.v.p. (3.31). Moreover, for any t > 0, f(t) € D(A),
IAFO)] < Ao, and

170 = 1oll + /0 1Q* (s, ()| — [|Q (5, £(5))]] ds. (3.50)

Note here that if f is as in Theorem 3.2, we know only that f € D(A)NX,.
Then A(t, f) and A%2f may not be not well-defined. Therefore, we cannot
obtain inequalities of the form (3.45) (except the case when A = 0 on D(A?)N
X4,) or like (3.47), at the level of abstraction of the theorem.

Also remark that Theorem 3.2 leaves open the question on the uniqueness of
the solution in the general case (under the conditions of the theorem).

However, uniqueness can be proved under additional conditions, [13].

PROPOSITION 3.3 If A(t,g) =0 for all g € D(A®>) N X4, t — a.e., then

IAf@I = [[Afoll - (& =0), (3.51)

and there is a unique solution of the i.v.p. (3.31) as in Theorem 3.2, which
satisfies (3.51).

A similar result like Corollary 3.1 can be formulated for Theorem 3.2.

The following proposition yields additional useful estimates, [11], for the so-
lutions of Eq. (3.31). For simplicity, we remain in the conditions of Theorem
3.1a). However, similar results are valid when Theorem 3.1b) holds, as can
be seen by inspecting the proof of the proposition.

Assume that I' : D(T') C X — X is a closed, positive linear operator. Let f
be a solution of problem (3.31), provided by Theorem 3.1a).
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PROPOSITION 3.4 a) Suppose that I" is of type D on DS°. Then f(t) € D(I'),
t>0, and
TN < ITfll (¢=0). (3.52)

b) Suppose that ' and pr are as in (3.46), with My 2O D. Then f(t) €
D), t >0, and

ITf @O < exp(pr([Asfoll)E) [ITfoll (2= 0). (3.53)

In applications, the choice of A and Ay may be not unique. In some cases,
the role of Ay and I' may be played by suitable powers of A, while, in other
examples, A = A; =T.

A correspondent to Prop. 3.4, applicable to Corollary 3.1, can be readily
obtained. The modifications in the reformulation of the proposition are ob-
vious and include additional hypotheses for the commutation of U with T,
etc.

3.4. Proofs

Sketch of the proof of Theorem 3.1

In the following, we give an insight into the rather lengthy argument of The-
orem 3.1 (see |11] for a detailed proof), and explain the role of assumptions
(Ao)-(As).

We start by observing that if fo = 0 in (3.31), then, by Remark 3.1, clearly
f(t) = 0 is a solution to Eq. (3.31). It is the unique strong solution in
D(A?) N X, as it follows from (3.45). Moreover, if 0 # fo € D(A?) N X,
but a(||Afo]) = 0, then QT (¢, fy) = 0, for a.e. t > 0, by (3.44), hence
f(t) = fo is a solution to (3.31). It is the unique solution in D(A%) N X,
because any other solution f*(¢) € D(A%) N X, must be a.e. constant.
Indeed, applying (3.45), and invoking the positivity and monotonicity of a,
we obtain 0 < a(||Af*(t)]|) < a(||Afo]]) = 0. This leads (again by (3.44)) to
Q*(t, f(t) =0 ae.

Therefore, one can assume below that fy # 0 and a(||Afo]]) # 0.

We first refer to the existence part of the theorem. Inspired from [2], one
can consider the problem

SFrallARDAf =BG, £ ), fO)=foe Xy (20, (359
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Here a is as in (Ay), and B is formally defined by

B(t,g,h) :=Q(t, g(t))+a (HAg(t)H +/0 A(s,h(s))ds) Ag(t) (t>0 a.e.)

(3.55)
for all g(t) € D(A) N X, and h(t) € D(A?) N X, with AQT(-, k(")) €
Lipe(Ry; X1).

By (3.45), any strong positive solution of Eq. (3.31) is also a solution to

(3.54). Conversely, any positive strong solution of problem (3.54) is a solution
of Eq. (3.31), provided that it satisfies (3.45).

Recall now that, by (Ag) and Lemma 3.1b), the operator L = —a(||Afo||)A
is the infinitesimal generator of a Cj positive semigroup {Vt}t>0, and

0 < V'h <exp(—a(||[Afol)Aot)h < h (h e Xy). (3.56)

Thus any solution of Eq. (3.54) is also a solution of the mild problem

fit)=Vtf, +/Ot VIS B(s, f, f)ds, (3.57)

the integral being in the sense of Bochner.

Eq. (3.57) is useful for monotone iteration. Indeed, {Vt}t>0 is positive, and

one can prove® the following properties ([11]).

LemMA 3.3 Let g;, hy, ¢ = 1,2, satisfy the conditions of Remark 3.2. Sup-
pose that gi1(t) < g2(t) and hi(t) < ha(t) a.e. on Ry. Then B(-,g;,hj) €
LI (Ry;X,), 4,5 =1,2. In addition, for a.e. t >0,

loc

0< B(taglyhl) < B(tvg27h2)' (358)

Thus, formally, by (3.57) one could consider the following iteration, hopefully,
increasing;:

A) =0, fat) =V fo, (3.59)
t
Falt) = Vo +/ VESB(s, furs foo)ds (n=34.).  (3.60)
0
Note that if {f,,(t)}, is sufficiently regular, by differentiation, (3.60) gives

%fn(t) — Bt fars o) — a(lASolDASa(t) (>0 ae, n>3),

(3.61)

5See the Appendix.
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and integrating (3.61) one has

fa(t) = fo+ /0 Q(5, fu_1(s))ds +

+ [0 (I8fas+ [ A faa(ear) Apa(o)is

- /0 a(IAfoll)Afu(s)ds. (3.62)

However, in general, B(+, g, h) does not exist for all g, h € X. Hence we need
give a meaning to (3.60), at least for fy in a sufficiently large set. Here comes
the role of D (of D(A%) N X4). Indeed, if fo € D (fo € D(A®) N X)),
then one can show that f,(t) € DX (fo € D(A*) N Xy), and is sufficiently
regular. This is clarified in the lemma bellow, which summarizes the main
results® of [11] on the properties of {f,,(¢)},,.

LEMMA 3.4 a) In addition, to the conditions of Theorem 3.1a), let fo € D°.
Then fo(t), QF(t, fu(t)) € DL a.e. on Ry. Moreover, A*FQ*(-, fn(-)) €
Ll (Ry;Xy), k=0,1,...., n=12,....

b) Assume the conditions of Theorem 3.1b). Then f,(t) € D(A%) N X, and
QE(fu(t)) € D(A?) N X4, t > 0. Moreover, A*Q*(f,) € L} (Ry;X4),
k=012, ,n=1,2,...

¢) In both cases a) and b), A¥f, € C(R4;X1), k= 0,1,2, and f, is a.e.
differentiable on Ry and satisfies (3.61) (and (3.62)). Moreover, for any
t >0, the sequence {fn(t)},,

d) If fn(t) is as in a) or b), and n > 2, then

1S increasing.

fult) < fot /0 Q(s, far(s))ds (3.63)

and

IAfu(®)] + /O A(s, faci(5))ds < AT . (3.64)

e) If fu(t) is as in a) or b), and I' is an operator of type D on D, (on
D(A?) N X4 ) then for any t > 0,

TN < [Tholl - (n=1,2,...). (3.65)

6See the Appendix for a proof.
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In particular,

[AFu ()] < exp(p(|ALfolE) |A%fol (620, n=1,2,..),  (3.66)

with p as in (3.42).

f) Suppose that f,(t) is as in a) (as in b)). Let I' : D(T') C X — X be
some closed, positive linear operator, satisfying (3.46), with My 2 D (with
Mi DDA N X, ). Then for anyt >0,

ITfa(®)]l < exp(or([[ArfolDE) [Tholl - (n=1,2,...), (3.67)
with pr as in (3.46).

By the above lemma, {f,(t)}, is increasing, and the key inequality (3.64)
shows that {f,(t)}, is norm bounded”. Thus {f,(t)}, is convergent, be-
cause X is monotone complete. One expects the limit to satisfy (3.54) (and
(3.57), too). The proof hinges on the application of Lebesgue’s dominated
convergence theorem to (3.62) (as the operators Q¥ are o-closed, and A is
closed). To this end, the limit of {f, ()}, must be in D(A?), which follows
from (3.66). Now, to prove that the limit of {f,(¢)}, is a strong solution to
(3.31), it remains to show that the above limit satisfies (3.45). This is done
by applying Gronwall’s Lemma to an inequality to be obtained from (3.62)
(by using (3.66) and the convexity of a). But the above procedure provides
the existence part of the Theorem 3.1a) only for fy € DS°, hence one more
step is needed. Since DY is dense in X (cf. Lemma 3.1), any initial datum
as in the assumptions of Theorem 3.1a), can be approximated by elements
of DS°. This leads to a monotone scheme approximating (3.60) and one can
apply successively Lebesgue’s convergence theorem. In details, one proceeds
as follows.

Step A. If in addition to the conditions of Theorem 3.1 a), one assumes
fo € D then Lemma 3.4 applies. As AF is closed, clearly, by (3.39) and
the monotone completeness of X, it follows that there is some f(t) € D(A¥)
such that AFf,(t) /~ AFf(t) asn — oo, t > 0, k = 0,1,2. Consequently,
f(t) satisfies (3.47). Moreover, Remark 3.2 implies that A¥f, k = 0,1,2,
Q*(, f()), and AQE (-, f(-)) arein L}, (R4; X). Then, applying Lebesgue’s

dominated convergence theorem in (3.62) and (3.64), we get

f(t) = fo +/O Q(s, f(s))ds +

"Inequality (3.64) motivates the construction (3.60) as a second-order recurrence.
Indeed, except for the case A = 0, an inequality of the form (3.64) could not be
proved if (3.60) was redefined with B(s, fn—1, fn—1) instead of B(s, fn—1, fn—2)-
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Af(s)ds (t>0)
(3.68)

+ [ e (s [ awsenar) - ainsn)

(i.e., f is a strong solution of Eq.(3.54)) and, also,

0 < 9(t) := [|Afoll = [[Af(®)]] —/0 Als, f(s))ds (= 0). (3.69)

Obviously, (3.68) implies f,Af € C(Ry; X, ).
Note now the usefulness of (3.68): to prove that f is a strong solution of

(3.31), it is sufficient to show that 1) = 0 (which means exactly (3.45)).

To this end, first observe that since, by (As), a is non-decreasing and locally
Lipschitz, then inequality (3.69) implies that there is a number 0 < ¢ =
c(IAfoll), depending only on ||Afol|, such that

0 < a(JAfoll) - a (||Af<t>|| +f A(T,f(T))dT> <ept).  (370)

Further rewriting Eq. (3.68) conveniently, and applying A to the resulting
equation, one can invoke (3.26) and (3.27) to obtain

o) = [ [atasad o (s + [ a0 soar) | Jazsts) s
(3.71)

Y

As f(t) satisfies (3.47), introducing (3.70) in (3.71), we find

0<y(t) < c/o P(s) HAzf(s)H ds < cT/O P(s)ds (0<t<T), (3.72)

for each T' > 0. Here, cr > 0 is a number depending only on T and fj.

Now the Gronwall inequality implies ¢¥(¢) = 0, 0 < ¢t < T, for any T > 0.
This concludes the existence part of the proof of the Theorem 3.1a), in the
case fo € D).

Step B. We use the result of the previous step to prove the existence part
of Theorem 3.1 a), in the case fo € D(A?)N X, as follows. First note
that by Lemma 3.1b), there is an increasing sequence { fo;} C DI such that
foi /" fo,as i — oo. Then, by Step A, there is a sequence of strong solutions
{F;}, of Eq. (3.31) with F;(0) = fo, satisfying the properties of the theorem.
In particular,

|A?Fi(t)|| < exp [p(| A1 foulD] [|A® fosl| (£ > 0). (3.73)
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In addition,

Fi(t) = foi+ /0 Q(s, Fi(s))ds, (3.74)
AFy(t) = Ao + /0 AQ(s, Fi(s))ds, (3.75)

and .
IAED)] + /0 A(s, Fy(s))ds = [Afos]|- (3.76)

Moreover, by Step A, each F; is the limit of an increasing sequence {f, ;(t)},,
defined by (3.60) with f,,;(0) = fo,;. But the positivity of V! and Lemma
3.3 imply that if f07i < f(),j, then fmi(t) < fmj(t) for all n and ¢ > 0. Then
the sequence {F;} is increasing,.

Furthermore, since [|Afoqll < [[Avfoll, ||A%foi]| < ||[A%fol], and since p is
non-decreasing, it follows from inequality (3.73) that

|AE0)]| < exp(o(lla1 folD)|A%fol] (> 0). (3.77)

Now a convergence argument, as in the beginning of Step A, implies that
there is an element f € L}OC(R+;X+), with the properties stated in Re-
mark 3.2, such that F;(t) / f(t) as i — oo, a.e. It remains to apply, say,
Lebesgue’s convergence theorem in (3.74)—(3.76) to conclude the existence
part of Theorem 3.1a).

Existence in case b). In this case, Lemma 3.4 applies, corresponding to the
fulfillment of the conditions of Theorem 3.1b). Then, the proof is as in Step
A of case a).

Finally, we prove the uniqueness part of Theorem 3.1.

Let f be the solution of Eq. (3.31) provided by the existence part of this
proof, and recall that it satisfies Eq. (3.45). If F' is another positive solution
of Eq. (3.31) with regularity properties as in Theorem 3.1, then F' satisfies
Eq. (3.45), too, hence

IAFOI+ [ 80 59)as = ARl = [AF )] + [ Ats, P
By Lebesgue’s convergence theorem applied to (3.60), clearly, f also solves

Eq. (3.57). On the other hand, F'is a solution to (3.57). But f < F, because
of the form of (3.60), so that

|Af(t ||+/A s))ds < ||AF(t ||+/A8F( ))ds

on some subset of R with nonzero Lebesgue measure. O
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Proof of Theorem 3.2

As in the proof of Theorem 3.1, to exclude trivial situations, we suppose the
| foll # 0 or a(]| fol|) # 0. By Lemma 3.1, there is a sequence {fn o}, C D
such that f,o /" fo as n — oo. Then by Theorem 3.1a) the i.v.p. (3.31)
with initial condition f, ¢ has a unique positive solutions F, € D(A%)N X,
such that (3.31) provided by Theorem 3.1 with initial datum f, ¢ forms an
increasing sequence such that F,,AF, € C(Ry; X ),

Fu(t) = fuo + /0 Q" (s, Fo(s))ds — /O QO (s, Fu(s)ds (t>0). (3.79)

and
AR+ [ Al Fueds = ALl @20 (379)

But A(s, Fy,(s) > 0 so that
IAEL @) < [[Afnoll < [IAfoll (¢ >0). (3.80)

Note now that Fy,, fno, QF(t, F,(t)) are positive. Then (3.26) and (3.27)
imply

I1Fu(t)]| = ||fn,0||+/0 HQ+(8,Fn(S))Hds—/O Q™ (s, Fu(s))||ds  (t >0),
(3.81)

To prove the theorem, we need show that {F,(t)}, and {Q* (¢, F,,(t))},, are
convergent, and, then we need to interchange the limits conveniently in (3.78)

and (3.81).

To this end, first observe that since {fy 0}y is positive and increasing, and
each F), is the limit of a sequence of the form (3.60), we obtain by a sim-
ple induction (which uses the positivity and isotonicity of B in (3.60)) that
{F.(t)}n is increasing. Thus, by (Ap), the positive sequence {AF,(t)}, is
also increasing. Then (Ag) and (3.80) give ||F,(t)|] < X ' |AE. (1) <
Mo A fnoll € Xo7t||Afoll. Hence, for each t > 0, both {F,(t)}, and
{AF,(t)}, are convergent, because X is monotone complete. Moreover, as A
is closed, the limit f(t) of {F,,(t)}, satisfies f(t) € D(A) N X4, and we have
AF,(t) / Af(t) as n — oo. Then, also {Q*(t, F,,(t))}, are increasing, and
Q* (t, Fa(t)) < QE(t, £()) ae. Tn particular, [Q*(t, Fu(t))]| < Q% (¢, £(2)]
a.e. Consequently, Q¥ (¢, F,(t)) /" Q*(t, f(t)) as n — oo, t -a.e., because X
is monotone complete and Q*(t,-) are o-closed t-a.e.

Now, applying (Az) and (3.80) we get
JQ & F@)] = lim QL F®)] <allAfl) ARl (382)
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a.e., hence Q= (-, f) € L} (Ry; X ).

loc
Thus we can take the limit n — oo in (3.78) and (3.81), and we can apply,
say, Lebesgue’s theorem to the second term of (3.78) and (3.81), respectively.
We obtain

£ = fo+ Jim [ QF e FeDas= [ QG spas 68)

and, by (3.26),

O = 1ol + tim [ Qs Aueds— [l £ as. 389

Since ||f(t)|| < oo for t > 0, and Q™ (-, f) € L}, .(Ry; Xy ), by (3.84), for each
>0,

n—oo

im t *(s s s < 00. .
fim [ Q7 (s, F(s)) s < (3.85)

Hence, applying, e.g., the monotone convergence theorem, it follows that
Q™ (-, f) is Bochner integrable and we can finally pass to the limit under the
integral sign in (3.83), (3.84), (3.80), and in (3.79), to conclude the proof of
theorem. O

Proof of Proposition 3.3

Equality (3.51) follows observing that A(s, F,(s)) =0 in (3.79), and taking
the oo limit. As in the uniqueness part of the proof of Theorem 3.1, the
solution f of (3.31) provided by Theorem 3.2 also solves the mild problem
(3.57) (but here, A(t,f) = 0 in the expression (3.55) of B, by virtue of
(3.51)). Now the uniqueness follows by an argument similar to the one used
in the uniqueness part of the proof of Theorem 3.1, taking now advantage of
the property A(s, F,,(s)) =0 (hence of (3.51)). O

Proof of Proposition 3.4

a) Let fo, {foi},{fni(t)},, and {Fi(t)}, be as in Step B of the proof of
Theorem 3.1a). Then for each ¢, the sequence {I'f, ;(t)} 1is positive and
increasing. Moreover, it is norm-bounded because

n

ITfni@N < TSl (¢ =0), (3.86)

as a consequence of (3.65) and of the property I'fo; < T fo.
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As X is monotone complete, it follows that {I'f, ()}, is convergent for all
1.

Recall that I is closed, and f, ;(t) / Fi(t) as n — oo, for all i. Consequently,
Fi(t) € D(I') and T'f,,;(t) / T'Fi(t) as n — oo, i = 1,2,.... In addition,
ITE|| < |ITfoll, t > 0,4 = 1,2,.... Then, reasoning as before, we conclude
that f(t) € D(I"), 'Fi(t) /" T'f(t) as i — oo, and that ||[['f]| satisfies (3.52).

b) The proof of (3.53) follows as in a), with the only remark that instead of
(3.86), we make use of the inequalities

ITfri(®I < exp(pr(|Asfo.il)t) IV foill < exp(pr(lAfoll)E) T foll (t(Z 0)),
3.87

which are immediate by (3.67), because pr is non-decreasing. O

Y

4. Applications
4.1. Smoluchowski’s coagulation equation

For k > 0, let L} := L}(Ry;dy) be the space of real measurable functions
g : Ry — R such that

loly = [ 1+ 9 ol ay < . (1)

Denote Lj . = {g € L; : g > 0}. Consider problem (2.2) in the space
X = LY(Ry;dy) (equipped with the usual norm ||-|| = ||| 1, and with the
natural order <).

Consider Ll,lg as a subset of X. Let ¢ = 0,1 and define the positive linear
operators Ac; : D(Ac;i) C X — X by D(Ac;) = L, (Aeig)(y) == Xi(¥)9(y),
with \;(y) :== (1 4+ )", y > 0 a.e., where y9 = § and 71 = a + 5.

Note that (2.3) and (2.4) define Q" and @ as positive and isotone nonlinear
operators in X, respectively, with the common domain D, := Lé.

Then the i.v.p. for (2.2) can be formulated in X as

SF=QUN=QIN - Qi) FO)=fo t>0.  (42)

In this case, one can apply Theorem 3.1a). The only point is to check that A.;
(i = 0,1) and QF verify inequalities of the form (3.40) and (3.42). Indeed, if
g€ L%B 4, then starting from (2.7), we find
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1 _ _ ‘
=3 /}R2 [T+ + A +y)" = (L +y+ 30"y, y)9(¥) g (y)dydys,
+
(4.3)
because 0 < v; < 1, and

Ay + 0 +y) f LT
(I+y+y) w20 (14a)

=1 (0<~y<1, 3y >0). (44)

Tnequality (4.3) shows that g - Aq(g) = [ AwoQ ()]~ [ Aeo@F (9)]] defines
a positive isotone map A, : D(A.) — R with domain D(A,) = Léﬁ 4

Starting again from (2.7), we find that if g € Léﬁ 4, then

HAE,OQZL(Q)H - HAich_(Q)H =

- l/ [y 9207 = (9% — (14507 0,399 )dydy.
R2

2
+
(4.5)
If 0 < B <1/2, applying again (4.4) in (4.5), we get

1A20Q7 (9)]] — [[AZ0Qc (9)]| <0, (4.6)

which is of the form (3.42) with p = 0.
If 1/2 < § < 1, then to estimate (4.5), we apply the following form ([11]) of

Povzner’s algebraic inequality, which can be easily proved?®:

(+y+y)P = (1492 - 1 +90)% <20+’ +3.)" (5. >0). (4.7)

Thus, applying (4.7) in (4.5), we find that there is a number ¢ > 0 such that

[A20QF (9)]] = [1A20Q (9| < cllAcagll [|AZog]l- (4.8)

Clearly, inequality (4.8) is of the form (3.42) with p(x) = cx.

Let a.(z) := apx, for some constant ag > 0. If ag is sufficiently large, then the
map L#Jr > g — ao||Aco9] Acog — Q2 (9) € X has the properties required
in (Ag)

It appears that QF, Acp, A1 and a. verify the conditions of Theorem 3.1a)
for Q*, A, A; and a, respectively, provided that ag is sufficiently large.
Consequently, one can apply Theorem 3.1a) to the i.v.p. (4.2). We obtain

8Indeed, (4.7) is equivalent to ((z) = 22° + 1+ 2% — (1 +2)? > 0 for all z > 0.
However, as ((z7!) = 272%¢(z), to prove that ((x) > 0 for > 0, we need only
show that {(«) > 0 on (0, 1], which is immediate, because 1/2 < 3 < 1.
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THEOREM 4.1 Let fy € L%ﬁ—k in problem (4.2). Then Eq. (4.2) has a unique
strong solution f such that f(t) € Léﬁ-#’ t >0, and Hf(t)HL%ﬁ is locally

bounded on R. In addition f,(1+y)°f € C(Ry; L' (Ry,dy)),

t
£y + [ AdfsDds = 1Al (= 0) (1.9
and there is a constant ¢ > 0 such that
£ Oy, < esplellfoll o Dllfolly, 201 (410)

Note here that if 0 < 28 < 1, then Theorem 4.1 allows for the existence
of solutions with infinite initial mass (see also |22|) i.e., fo € L§ﬁ7+, but
fo ¢ L}. The theorem does not imply directly the mass conservation, except
for the case ¢1 > 0, 8 = 1 and o = 0. However, if fy € L§ﬁ7+ N L%, then
the solution f(¢) has finite mass: indeed, if ' : L} € L' — L! is defined by
(T'9)(y) = yg(y) a.e. on Ry, then clearly, I' is of type D on ﬁz":lLllg@_F, hence
Prop. 3.4a) applies, so that f € L%Q’Jr N LY, and [T < [T foll-

Theorem 4.1 remains valid in the case of the discrete Smoluchowski equation
(2.10), with obvious change in formulation®.

4.2. Povzner-like model with dissipative collisions

Let X = LY(R? x R3;dxdv) = L', equipped with the norm ||| := ||-|| ;1 and
the natural order <. Denote by L} := L}(R? x R3;dxdv), k € R, the space
of measurable functions on g : R? x R3 — R satisfying

lolly = [ (1 W) g vl dxdv < oo, (411)
+
As before, Ll:!é,+ denotes the positive cone in L,lg. It can be seen that (2.15) and
(2.16) define Q; as positive and isotone operators on the common domain
D .= L,ly. This follows easily if we perform the change of variable (0, R] x Q2 3
(r,n) =y :=rn € {z €R3 : |z| < R} in (2.15) and (2.16), and then take
into account (2.17).

Now, formulated in X, the i.v.p. (2.14) reads

Sr=Af+QiN-Qih, FO=h=0, (@1

Note that L}, defined before, must be now replaced by I1(R) = {c = (¢;) : ¢; €
R, j=1,2,.. [lell, :== 3272, j" lej| < o0}, 7> 0.
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where f = f(t,x,v) is the one-particle distribution function, A is the in-
finitesimal generator of the Cy group (U'f)(x,v) := f(x — tv,V), a.e.

Let the positive linear operator Ag : L — X be defined by (Agg)(x,Vv) =
AMv)g(x,v) ae. on R? x R3, with A(v) := (1+]|v|?). Define aq(z) := cox for
some constant cg > 0. If ¢g is sufficiently large, then a4, Ay and Q; verify
the conditions of Corollary 3.1 for a, A = Ay and Q¥ respectively.

Indeed, the operators Qf are p-saturated. Moreover, they are o-closed, by
the monotone convergence theorem. It is immediate that the domain con-
ditions imposed in Corollary 3.1 are satisfied. Further, applying (2.12) in
(2.18), we obtain an inequality of the form (3.40), i.e., if g € Lﬁll,—l-’ then

0 < Ad(g) = [|[AaQ7 (9)]| — [ 0aQ7 (9)]| =

R
:/ dr/ m(r,n,v,w,x)g(x,v)g(x + rn, w)dndvdwdx,
0 OxR3xR3XR3

(4.13)
where 7(r,n, v, w,x) := 8(n)(1-3(n)) | (n,v — w)|**7 P(,n). Remark here
that the map L}L—F 3> g +— Ag4(g) € R is positive and isotone. Moreover, for
co sufficiently large, the map L%’_i_ > g+ co||Aggll Aag — Q, (9) € X is also
positive and isotone. Further, to obtain an inequality of the form (3.42), note
that (2.12) gives A(v))2 + A(W)2 < 2+ V2 + | w/[)2 < 2+ [v]* + [w]?)?
= A(v)? + A(W)2 + 2A\(V)A\(w), which can be applied in ( 2.18) to conclude
easily that there are two constants c1, ¢ > 0 such that

[AZQ% (9)|| - [|A%Q7 ()] <

R
< / dr/ PAWV)A(W) 2 g(x, v)g(x 4+ rn, w)dndvdwdx <
0 OXR3XR3xR3

< c|[Aagll ||AZg]

, (4.14)

for all g € Lé7+. Finally, it is obvious that the group U’ (generated by
A) commutes with the semigroup V! generated by Ag, and AFQ*(Ug) €
L (Ry; Xy) forallge e Ll k=1,2,.....

loc

Therefore, by Corollary 3.1, we have the following result (|11]):

THEOREM 4.2 Let fy € Li,+ in problem (4.12). Then Eq. (4.12) has a
unique positive mild solution f such that f(t) € L411,+7 t >0, and ||f(7§)||L}1 is

locally bounded on Ry In addition, f, (1+ |v|*)f € C(Ry; LY),

£y + [ Aalr)ds = allzy (¢ 0) (415)
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and there is a constant ¢ > 0 such that
1F Ol < explellfolly ) 1ol (¢ 0). (4.16)

The argument of Theorem 4.2 can be repeated with obvious modifications
to provide a similar result for the space-homogeneous version of Eq. (2.14),
which coincides with the force-free, three dimensional space-homogeneous
Boltzmann model for granular flows, |5, 6].

4.3. Povzner-like model with chemical reactions

Let X := L'(R3 x R3; dxdv)" be equipped with the order < induced by the
order of the components (i.e., the natural order of L'). The norm on X is
defined as

N N
ol =3 / 19i(%, V)] dxdv = 3 lgill 1 (4.17)
i=1p3lps i=1

Denote by Ll,lg = L/%C(IR‘(3 xR3;dxdv), k € R, the space of measurable functions
g : R3 x R? — R satisfying

k
lolly = [ @ W) lotx v dxay (418)

R3 xR3

and let L,lC o be the positive cone in L,1€.
It is natural to formulate the i.v.p. (2.29) in the space X.

Under the conditions of the model, (2.30) and (2.31) define Q] and Q;,
1 <i < N, as operators from the common domain (L)Y C X to L'(R?;dv).
Defining the operators Qfg C(LHN € X — X by QE = (Qf, ..... ,Qﬁ), we
can write the i.v.p. for Eq. (2.29) in X as

CrvA=QuLN) - Q5D 0<IO)=foeX (t>0), (419

where A is the infinitesimal generator of the Cy group of isometries {U'}ier
on X, given by (Ulf)(x,v) := f((x — tv,V).

Define the positive closed linear operator Ag : (L)Y +— X by (Apg)i(v) =
Ai(v)g(v) ae. on R® x R3 | where A\j(v) := m; +m; [v[* /2+ E;, 1 <i < N.
One can state the following result (|12]):
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THEOREM 4.3 Suppose that in problem (4.19), fo: € L411,+ , 1 <i<N.
Then E'q (4.19) has a unique mild solution f(t) = (f1,..., fn) such that
fitt)y € Ly, t >0, and | fi(t )l is locally bounded on. Ry, 1 <i<N. In

addition, fi, (1+ |[v[*)fi € C(Ry;LY), 1<i < N,

[ABf ()|l = [[ABfoll (¢t =0), (4.20)

and there is a constant pg > 0 such that
1AL £ ()| < exploo |ABfoll ) [|ABfol| (¢ > 0). (4.21)

The above result follows by applying Theorem 3.1 in the case A = Ay = Ap.
Indeed, the domain conditions of Theorem 3.1, as well as properties (Ag),
(A1) can be immediately checked (with A = 0, owing to (2.38). Next, let
ap > 0 be some constant, and define a(x) := apz. Owing to (2.38), for ag
sufficiently large, the map L} , 3 g — ao |[Apgl| Apg — Q(9) € X satisfies
(Ag). Finally, note that, as a consequence of (2.39) (and of (2.37)), there
exists a number pg > 0 such that

Z/Rg + )2 [QF (9) — Q7 (9)] dxdv <

< pol|@+ v [+ v (4.22)

for, say, all g € (L, )V
Then inequality (3.13) gives exactly (As) with p(x) := poz.

4.4. Boltzmann model with inelastic collisions and reactions

Let X := (L'(R3;dv))" be equipped with the order < induced by the order
of the components (i.e., the natural order of L'). The norm on X is defined

as
N

N
nwzz/mmw=2mm- (4.23)
=1

i=1ps
Denote by L,lg = L}C(R?’;dv), k € R, the space of measurable functions
g : R3 x R? — R satisfying

k
lgll 2 ::/R (1+[v[*)2 |g(v)| dv < oo (4.24)
+
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and let Ll:!é,+ be the positive cone in L,lc.

It is natural to formulate the i.v.p. for Eq. (2.47) in the space X. Under
the above conditions, (2.48) and (2.49) define Q;" and Q;, 1 < i < N,
respectively, as operators from the common domain D = (L) C X to
L'(R3;dv). Defining Qﬁ :DC X~ X by QE = (Qli, ..... ,Q]j\:,), we can
write the i.v.p. for Eq. (2.47) in X

SF=QBUN - Qa(D, SOV =fo=(ons o fow) € Xro (425)

We shall prove the existence of solutions to problem (4.25), by applying
Theorem 3.1a) (in the case A = Ay). To this end, let the positive closed
linear operator Ap : (L)Y + X be defined on components by (Apg)i(v) =
Ai(v)g(v) ae. on R3 x R3, where \i(v) :==m; +m; |[v|* /2+ E;, 1 <i<N.
Denote 1,(W) := 3 icpy) 2oier Ai(Wig); v € M. Then clearly, I,(w) =
M, + W, (w), hence

0 < Wy (w) < ly(w). (4.26)

In addition, defining A7(w) := [Ty H;”:l Xi(Wij), v € M, we have
1) < bl BPX ), (1.27)

where F := min{m; + E; : 1 < i < N}. It is useful to remark that, since
W, (w) > E|y| >0, and 0 < ¢ <1, then by (2.56), (4.26) and (4.27),

Vaa(Ww) < CA(w) (we R ae), (4.28)

for all , 3 € M. Here C = C(E,K) > 0 is a number depending on E and
K (recall that K is the maximum number of partners in a reaction channel).

To apply Theorem 3.1a) to (4.25), first remark that Qg and Ap verify the
domain conditions imposed to Q* and A by the theorem. Moreover, Ap has
the properties required for A in (Ag). Further, observe that formula (2.57)
provides a correspondent to (3.40), specifically,

Ap(9) = ||[AQp(9)| — |ABQE(@)|| =0 (g€ (L] )M). (4.29)

To obtain a correspondent to (3.42), let s, (W) 1= > ;cpn(y) POHEPYI| wi )2
Next, using the definition of QE and property (Bs), and applying the obvious
inequality s, (W) < lo(w)?, we find that if g € (Lé7+)N, then

HA2BQE(9)H = Z / Sa(w)pﬁ,a(wv n)(gﬁ © uﬁ7a)(wv n)dwdn <

O‘?BEMRS\CA XQB
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< > la(W)*pg.a(w,n)(¢° 0 ugq) (W, n)dwdn. (4.30)

BEMpsial

We apply property (3.9) in the last integral. Then interchanging « and (3,
we get

[3Q5@I < 3 [ (sousa(wm)rga(wn)ge (wdwdn.

a,Be MRS‘Q‘XQﬁ

(4.31)

Since lg(w) = Mg + Wg(w), property (Bz) implies that (Ig o ugq)(w,n) =

lo(w) for all (a, ) € Cyr, W € Dg’a. This and (Bj;) enable us to deduce
from (4.31) that

[A3QE@)] < > la(W)*rga(w,n)g"(w)dwdn.  (4.32)

a,,BGMRS‘a‘ XQB

Now, using the definitions of l,(w) and @5, and then, taking advantage of
(2.56) and (4.26), we obtain from (4.32)

[ABQE(9)| <

< > 5a(W)rp.a(W,n)g%(w)dwdn + p5(|Aggl) | ABg|| =

OC,BEMRS‘Q‘ XQ

= |1A%Q5(9)|| + pB(I(ABg) || A%y

where pp is a positive non—decreasmg (polynomial) function.

(4.33)

Therefore, the last inequality is the required correspondent to (3.42) (in the
case A = Aq).

Further, let ag > 0 be some constant and define a(z) := ag ENK P,z > 0.

Therefore, a(||Apgl|) = ao Z K |Apg|/P. But each term ||Agg||? in the r.h.s
of the last equality can be expressed by (4.23), and the resulting expression
can be expanded by the multinomial formula. Then, after some elementary
algebra we get the following useful expression

altngl)=a 3 e [ Nwiglwiw,  (430)

YEM, IVIZl R3II

where ¢y; > 0 are strictly positive, constant coefficients, v € M, |y| > 1,
1<i<N.
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We show that if ag is large enough, then (L%A_)N > g — a(||Asfl)ABg —
Q5 (g9) € X is positive and isotone. To this end, first note that one can write

Q; (9)(v) = Ri(9)(V) gi(v), (g€ (L )N, veR ae,1<i<N),
(4.35)

where

Qg
Rwi= 3 a [ (e T [Jotwe) aw;
a,B0eEM  pajal-3 seN(a) Jj=1
(8,0)#(i,01) Wi, =V
(4.36)
with vg, as in (2.56). Hence,

a([[ABgl)(Ag)i(v)=Q5 (9)(v) = [a([[ABgl)Xi(v) — Ri(9) (V)] gi(v). (4.37)

It is convenient to set

Bow=c Y a [ pew I [[ewn|
0 BEM ol s seN(a) j=1
(5:3)# (i) Wi o, =V
(4.38)
with C' as in (4.28). Summing on S in (4.38), using the explicit form of

Y

A%(w), and invoking property (B7), we are easily led to

RH9)() =CNv) D0 gy [ Nw)g"(w)dw, (4.39)
TEM,IYIZL iyl
where ¢, ; > 0 are constant coefficients, vy € M, |y| > 1,1 <i < N.
We introduce (4.34) and (4.38) in (4.37). Consequently, for v € R? a.e.,
a([ABgl)(ABg)i(v) = Q7 (9)(v) = [R{(9)(v) = Ri(9)(V)]gi(v) + Ti(g)(v),
(4.40)

where

Ti(g)(v) == A(V)gi(v) Y (aes — Cgn) / X' (w)g" (w)dw. (4.41)

YEM, |v|=1 R3]

Now we compare (4.36) and (4.38), by taking advantage of (4.28). It fol-
lows that the map (L )Y 3 g — [RA(g) — Ri(g)]lgi € L* is positive and
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isotone, 1 < i < N. Moreover, because of the form of T;(g), if ag > 0
is sufficiently large, then the mapping (L%HF)N > g +— Ti(g)(v) € L' is
positive and isotone for all 4. In this case, by virtue of (4.40), the map
(L%HF)N > g — a(||ABgl|)ABg — Q5(g9) € X is also positive and isotone.

In conclusion, the conditions of Theorem 3.1a) are fulfilled (in the case A =

Aq), so that we are in position to state the following result ([11]):

THEOREM 4.4 Suppose that in problem (4.25), fo; € L}l7+, 1 <7< N.
Then Eq. (4.25) has a unique strong solution f(t) = (f1,..., fn) such that
filt)y e Lj y, t >0, and HfZ(t)HL}1 is locally bounded on Ry, 1 <i < N. In

addition, fi, (14 |v|)f; € C(Ry;LY), 1 <i < N,

[ABf@)N = [ABfoll  (t =0), (4.42)
and there is a non-decreasing function pp : Ry — R4 such that
[ABF O] < exp(ps(lfolDt) [[AB Sl (t=0). (4.43)

Theorem 4.4 does not state the conservation of mass, momentum and en-
ergy, but the conservation (in arbitrary units) of the quantity mass+(total)
energy. However, the properties of f(t), cf. Theorem 4.4, allow for checking
immediately the separate conservation for each of the above quantities.

Theorem 4.4 reduces to the main monotonicity result of |2] when Eq. (4.25)
is particularized to the case of the classical Boltzmann equation. Moreover,
in that case, using suitable additional Povzner-like estimations, we can re-
obtain the general moment estimations of [2], as application of Prop. 3.4b).

Finally, remark that similar analyses as for Theorems 4.2 and 4.4 can be
developed for the main model considered, e.g., in |27].

4.5. Nonlinear von Neumann-Boltzmann equation

As A is unbounded (by construction), the existence of solutions to problem
(2.62) seems not immediate from general considerations.

However, one can show that the conditions of Theorem 3.1 are fulfilled with
a(x) = .

First recall that Tr[A*(QT — Q7)](F) = 0, for all 0 < F € D(AF)n X,
k = 0,1. Then observe that, since A > I, it follows easily that Tr[A?(Q" —
QIF) <eTr(AF)TrF < eTr(AF)Tr(A%F) for all 0 < F € D(A3) N X .

So we can now formulate our existence result (|12]):
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THEOREM 4.5 Suppose that in problem (2.62), 0 < Fy € D(A%). Then
Eq. (2.62) has a unique mild solution 0 < F(t) € D(A?), and TrF(t) is
locally bounded. Moreover, F,AF € C(R4; X), TrF(t) = TrEy, Tr(AF)(t) =
Tr(AFy) and Tr(A?F)(t) < exp(teTr(AFy))Tr(A2Fy) (¢ > 0).

5. Concluding remarks

The results of the previous section of applications can be easily completed
taking advantage of Theorem 3.2. As an example, the previous Theorem 4.1
can be completed as follows

PROPOSITION 5.1 Let fy € Lé7+ in problem (4.2). Then Eq. (4.2) has a

strong solution f(t) € Lﬁ+, t > 0.

As mentioned before, the uniqueness is no longer ensured in the latter case.
Theorem 3.2 extends the main existence result of [11]. The other general
existence results formulated in [11] can be similarly completed, with obvious
modifications. This allows to reconsider the applications of [11], accordingly,
in an obvious manner.

Prop. 3.3 provides uniqueness of the solutions in the special case when A
vanishes on a rather large set. This can be applied, for instance, to the
space-homogeneous Boltzmann equation with hard potentials, to obtain a
similar existence result as in, e.g., [20]. However, in a more general case,
the uniqueness problem, under the conditions of Theorem 3.2, remains open.
Here we can however remark that the regularity conditions required in the
theorem might be necessary to ensure the uniqueness of the strong solutions.
Indeed, examples of non-unique (but) less regular solutions of the Boltzmann
equation have been recently discovered, [26], [19].

In this chapter, we presented various examples of existence results for gen-
eralized Boltzmann models obtained by monotonicity methods. The above
methods are potentially applicable to investigate other evolution problems.

On the other hand, the results presented in this review describe only par-
tially the properties of the models considered. They must be completed by
a thorough study of other properties of the models, e.g. the existence of sta-
tionary or/and equilibrium solutions, Lyapunov functionals, H-theorems (see
e.g. |7]), asymptotic properties, construction of effective numerical methods.
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6. Appendix

1) Sketch of the Proof of Lemma 3.3

Property B(-, gi,h;j) € Li,.(Ry; X4), 4,7 = 1,2, follows from (A;), (As) and
Remark 3.2.

To prove (3.58), let

yi(t) ::/0 A(s,hi(s))ds (1 =1,2). (6.1)

Clearly, 0 < yi(t) < ya2(t), because of the isotonicity of A(t,-) (cf. (41)).
Further, define F(z,y) := a(z +y) — a(z), with a as in (A2). The properties
of a (cf.(Ag)) imply

F(a*,y) — Flz.y) = /0 "l e —d@tro]de=0  (62)

for all 0 <z < z* and y > 0. Then one can show easily (invoking (Asz), the
isotonicity of QT (¢,-) and the obvious inequality Ag;(t) < Ags(t)) that

0 < B(t,g1,h) = B(t,91,0) + F ([[Agi(®) |, y1(2)) Aga(t) <

< B(t,92,0) + F ([Agi (D), y1.(2)) Aga(t) (6.3)

and

0 < F (A5 9:() < F (|Ag2@I,1(2)) < F (|Ag2 (@], 92(2)) - (6.4)

Inequalities (6.3) and (6.4) can be now easily combined to obtain (3.58). O

2) Sketch of the Proof of Lemma 3.4

a) Since DT is p-saturated and AFQ®(t,-) are positive and isotone, the key
point is to show that for each 7" > 0 and n = 1,2, ..., there is g, € D
such that

0< fut) <gnr (0<t<T ace.). (6.5)

Then (3.41) gives Q™ (t,gn,7) € D a.e. on Ry, hence AQ= (-, gnr) €
L} (Ry; Xy) for all k= 0,1,2,.... The same properties hold for Q" (¢, gn.7)
and AkQJr(-,gn,T), respectively (by virtue of the assumptions of Theorem

3.1a) and by (3.44)).
Inequality (6.5) can be proved by induction.

Indeed, note that (6.5) is trivially verified for n = 1 by g1 7 := 0, and for
n = 2 by gar := fo. Further, at the induction step, assuming that (6.5) is
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fulfilled for n = 1,2,..¢ — 1 (with ¢ > 3) applying, in essence, the properties
of A, a, and (3.28), one first obtains

t t
Ak/ B(s, gn—1,1: gn—2,7)ds = / A*B(s,gn-17,gn—27)ds (0 <t <T),
0 0

(6.6)
for all k =1,2,... and n = 1,2,...,¢ — 1. Then observe that f,_1(t) < gq—1.7
and fy,_2(t) < gq—27 satisfy the conditions of Lemma 3.3 for g; < g2 and
h1 < hg, respectively. Thus, applying conveniently (3.56) and (3.58) in
(3.60), and invoking (6.6), we get

T
0<,(0) <o+ [ Bls.girgan)ds = g0 € DT (0<t<T)
0
(6.7)
b) As before, it is sufficient to show by induction that property (6.5) is verified
by gnr € D(A®) N X
First note that if g; 7 = 0 and ga7 = fo, then (6.5) is trivially verified for
n =1, 2, respectively.

The induction step is simpler than in a), because now one can make use of
the fact that V? is Cy. Then, fot V*hds € D(A) for all h € X, t > 0, which,
in our case, implies (for any 0 <t <T)

t t
/ Vt_sB(Ta 9q—1,1 Gg—2,7)ds = / V°B(T, gq-1,1,9q-2,7)ds € D(A3)OX+-
0 0

(6.8)
Since, in our case, B(t, gq—1,1,9q-2,1) < B(T,99-11,9q—2,1), We conclude
the induction step, using property (6.8) with the key inequality

t
0 é fq(t) S fO +/ Vt_sB(T7 gq—l,T’gq—ZT)ds (0 S t § T)7 (69)
0

which follows, in essence, by Lemma 3.3, and by applying (3.56) and (3.58)
in (3.60).

c) The statement follows from simple regularity considerations and some
direct computation.

d) Obviously, 0 = fi(t) < fa(t) < f3(t) a.e.. Then a straightforward induc-
tion, applying (3.58), shows that {f,(¢)} is a.e. increasing.

For the rest of the proof, note that (3.63) implies (3.64). Inequality (3.63) can
be proved by induction. Indeed, since 0 = f; < fo(t) < fo, and A(t,0) =0
a.e. (cf. Remark 3.1), formula (3.63) is trivially verified for n = 2. Let ¢ > 3
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and suppose inequality (3.63) to be valid for n = 2,3,....¢ — 1. If n = ¢ in
(3.62), then the positivity of @ and 0 < Afy—1(t) < Afy(t) give

fa(8) < fo+ /0 Q(s, fy1(s))ds +

" /0 t [a <Hqu_1(s)H n /0 A, fq—z(T))dT> - a(HAfoH)} Afy(s)ds.

(6.10)
According to the induction hypothesis, (3.63) holds true for n = ¢—1. Hence
(3.64) is also valid for n = g — 1, as concluded before. Then a(||Afy—1(s)|| +
Jo A(T, fa—2(7))d7)) < a(|Afol]), because a is non-decreasing. As Afq(s) is
positive, clearly the integral term containing Af,(s), in the r.h.s. of (6.10) is
negative. Then (3.63) becomes true for n = q.

e) Note that QT (t, f,(t)) € D(I'), for a.e. t > 0. Also, TQ* (-, f.(-) €
L} (Ry; Xy). Indeed, let T > 0 and g, 1 > fa(t) be as in a). If T'is of type
D on D%° (on D(A%) N X4 ), then (3.36) and (3.41) give |TQE (¢, fu(t))]| <
ITQ*(t, g )| < ITQ™(t gl < alllgnrll) ITAG 7| for ae. 0< ¢ < T.
On the other hand, if ' satisfies (3.46), then (3.41) implies

[TQ* (¢, fu(®))]] < [TQ™(t, fa®)]| + pr(IArgna ) [Tgnrll <
< a(llgn,r ) ITAgnzll + pr([Argnrl)) [Tgnzll (0<t<T a.e.).

But (3.63) is of the form (3.37), and the above considerations show that
Lemma 3.2 applies (with I" instead of A). Hence,

t
ITfa(0)] + /O As far(s):T.Q)ds < [Tfol (20, n>2). (6.11)

Now the proof can be immediately concluded: if n = 1, then formula (3.65)
is trivially satisfied; if n > 2, then (3.65) is directly implied by (6.11).

To obtain (3.66) observe that A? satisfies the conditions for I in e).
f) First apply inequality (3.46) in (6.11). It follows that

t
IT ()] < [T ol +/0 pr([ALfoa(s)DIIT fa-1(s)llds  (t=0, n>2).

(6.12)
But A; satisfies the conditions of e) in the present lemma, hence ||A1 f,,(¢)]] <
IA1foll, t > 0, n = 1,2,... . Introducing the last inequality in (4.16), we

obtain

t
IT (D)l < ”Pf0”+/0I‘(HA1fOH)/O ITfn-a(s)l[ds (=0, n=2). (6.13)
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Finally, since (3.67) is obviously satisfied for n = 1,2, a straightforward
(Gronwall type) induction in (6.13) concludes the proof. O
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