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Abstract

In this paper we realize a study on spline approximation method and different types of reg-
ularization techniques (like multilevel Landweber iteration, and a multilevel Tikhonov schemes
with zero’s order stabili- zers). All these methods are applied to several (linear) first kind integral
Fredholm equations. Advantages of developed methods are proved by numerical experiments when
compared to some standard techniques.
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1 Introduction

Let K : L2([a, b])→ L2([a, b]) be the (compact) integral operator

Kx(t) =

∫ b

a

k(t, s)x(s)ds, (1)

and the equation
Kx(t) = y(t), ∀ t ∈ [0, 1]. (2)

with square-integrable kernel k : [a, b]× [a, b]→ IR, and y ∈ L2([a, b]). Our problem is to derive x(s)
when the data function y(s) and the kernel are known exactly, or only approximately.

2 Spline Approximation Method

We shall start by briefly presenting the projection method used to solve the equation (2).
Let n ≥ 1 be arbitrary fixed and {v1, v2, . . . , vn} ⊆ R(K) a set of vectors with ‖vi‖ = 1, ∀ i ∈ IN . We
consider the following discretization of the equation (2): find x ∈ Xn such that

〈Kx, vi〉 = 〈y, vi〉, ∀ i = 1, . . . n, (3)
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where Xn = span{K∗v1, . . . ,K
∗vn}. If, for any n ≥ 1, the set {v1, v2, . . . , vn} ⊆ R(K) is linearly

independent, then the discrete problem (3) has a unique solution xn ∈ Xn given by (see [6])

xn = (K
∗v1,K

∗v2, . . . ,K
∗vn)Q

−1
n (〈y, v1〉〈y, v2〉, . . . , 〈y, vn〉)

t (4)

or equivalent

xn =
n
∑

j=1

αjK
∗vj , (5)

where α = (α1, . . . , αn) is the unique solution of the system

Qnα = b

whith Qn = (〈K
∗vi,K

∗vj〉)i,j=1,n, b = (b1, . . . , bn)
t ∈ IRn, bi = 〈y, vi〉. Since K

+y = K+PRKy, the
solution of (3) remains the same if y is replaced by PRKy. So, one can assume that y ∈ R(K). The
following result is proved in [6] (Theorem 6).

Theorem 1 Under the above condition of linearly independency, and if
span{v1, . . . , vn, . . .} is dense in R(K), then lim

n→̄∞
xn = xLS, where xLS is the minimal norm solution

of the least-square problem associated to (2).

Remark 1 In [7] it is proved that the previous theorem still holds even if we don’t have the linear
independent functions, but under a milder condition.

The main idea presented in [2] is to use in the projection method using as vi the spline functions. For
this, let a = x1 < x2 < . . . < xn = b a partition of [a, b]. That author requires that y is b− a- periodic
function. This is not a constrained condition since we can define the other (eventually needed) values
as y(sj) = y(sj+n), j ≤ 0, and y(sj) = y(sj−n), j > n, and the knots xj with j < 0 or j > n are
chosen on peridiocity. We shall denote by si,2m−1(x) the local polynomial spline of 2m − 1 degree
constructed on knots xi, . . . , xi+2m, i = −2m + 1, . . . , n − 1. The formulas for the local spline and
the algorithms of their stable calculation is given in [1]. In our example we shall use the cubic spline
polynomials (so, m = 2). Thus, the approximated minimal norm solution will be a linear combination
of such splines.
In [2] it is proved that (Theorem 1.2.1.) any solution for the initial equation obtained by the collocation
method is also solution obtained by the projection method. As in most cases, the first method is more
tractable to deal with, we shall use this one in numerical experiments.

Remark 2 Another way to approximate the minimal norm solution is using the trigonometric spline
function.

Remark 3 As future work, we intend to use the spline approximation method in order to solve an
integral equation for a single layer equation associated with Laplace Dirichlet problem.
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3 Regularization Methods

Even if we formulate (2) in the least-square sense, if K is of infinite rank, we have problems in solving
it because the Moore-Penrose inverse K+ : D(K+) = R(K)⊕ R(K)⊥ → IR is unbounded, and as we
have a noise in the data, namely

‖ y − yδ ‖≤ δ, (6)

one cannot expect the solution of the perturbed least-squares equation to be a good approximation to
the exact least-squares xLS = K+y. This is because by its very nature, the initial problem is ill-posed.
In order to overcome this shortcoming, it is considered the regularized equation of the normal equation

K∗Kxδ = K∗yδ, (7)

where K∗ is the adjoint of the operator K. Such (regularized) equations are computationally more
tractable, but, in this case, another difficulty arises: to find a good regularization parameter. This task
can be an expensive procedure. For example, for the standard Landweber iteration, for an n-point
discretization of (2) it is required 2in2 operations, where i is the number of iterations, which can be

quite large; also, for the Tikhonov method the cost is n3

2 +
jn3

6 .
In what follows, we shall briefly present multilevel schemes which reduce the above mentioned com-
putational cost (for details see [5]).

3.1 Auxiliary Results

For the compact operator K, let {un, vn, µn} be the singular system given by the singular value
decomposition theorem (for short, the SVD theorem): {vn} is the orthonormal eigenvector system
for K∗K with the eigenvectors λ21 ≥ λ22 ≥ . . . , µn = |λn|

−1 , and un = µnKvn. It is known that
{vn}, {un} respectively form orthonormal bases in R(K∗), R(K) respectively. Also, the Picard
Criteria for solvability and stability of (2) states the following (for more details and for proofs, see
[3]).

Theorem 2 Equation (2) has a solution if and only if
(i) y ∈ N(K∗)⊥, and

(ii)
∞
∑

n=1
µ2n |(y, un)|

2 <∞.

Under these assumptions, the solution is

x =
∞
∑

n=1

µn(y, un)vn. (8)

Remark 4 Problems appear when y is perturbed by δy, because, in this case, or for y+δy the condition

(ii) may not hold, or if it does, the series
∞
∑

n=1
µn(δy, un) may be noticeable (as µn →∞). This is because

R(K) is not closed (or dim R(K) =∞).
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Theorem 3 If y ∈ D(K+), then the minimal norm solution (for exact data) is given

xLS = K+ =
∞
∑

n=1

µn(Py, un)vn =
∞
∑

n=1

µn(y, un)vn, (9)

where P is the orthogonal projector onto R(K).

Remark 5 As in the previous remark, if R(K) is not closed, the perturbed least-squares has the same
instability problem.

3.2 Landweber Iteration. Tikhonov Regularization

The aforementioned problems can be solved using the regularization algorithms (the main results can
be found in [4]). The Landweber iteration and the Tikhonov regularization methods are defined as

xδn+1 = xδn + µ(K∗yδ −K∗Kxδn), x
δ
0 = 0, 0 < µ <

2

‖ K∗K ‖
=

2

‖ K ‖2
, (10)

and
xδα(δ) = [K

∗K + α(δ)]−1K∗yδ, (11)

respectively, where xα, xδα are the solutions of the regularized equation with exact, and perturbed
data respectively. The following estimations hold.

Theorem 4
‖ K(xα − xδα) ‖≤ δM, ‖ xα − xδα ‖≤ δ

√

Mr(α). (12)

Remark 6 For the Landweber-Fridman iteration, M = 1, r(n) = µn, and if n(δ) is chosen such
that δ2µn(δ) → 0, δ → 0, then xδ

n(δ) → xLS ; for the Tikhonov scheme, M = 1, r(α) = 1
α
, and if

δ2

α(δ) → 0, δ → 0, then xδ
α(δ) → xLS .

The Morozov discrepancy principle chooses the unique α(δ) with the property ‖ Kxα(δ) − yδ = δ ‖ .
For the first kind integral equation, the Landweber iteration is

xδn(s) = xδn−1(s) +

b
∫

a

k(v, s)



yδ(t)−

b
∫

a

k(v, t)xδn−1(t) dt



 dv,

equation which is solved after is discretized as

x̃δn = x̃δn−1 + hKt
hh

[

ỹδh − hKhhx̃
δ
n−1,h

]

,

where h is the step size of the discretization, and Khh is the discretized kernel with stepsize h. The
theory assures us (see [4], [5]) that both

‖ xδn(s)− xLS ‖→ 0, δ → 0
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and
‖ x̃δn,h − xLS ‖→ 0, δ → 0,

and also, the quadrature error goes to 0. The idea of the multilevel schemes is to monotorize the
residual; if the residual does not change much after a coarse-grid correction, then only additional
Landweber iteration on the fine grid should be performed. In [5] is said that α should not to be too
small to permit magnification of roundoff errors which can be obtained on a grid coarser than H. If
this grid is 4h, letting H = 2h, the number of operation is smaller than in the standard approach.
The standard form of the Tikhonov scheme is

(K∗K + α(δ)I)xδα(δ) = K∗yδ. (13)

The zero’th order stabilizer is f(x) =‖ x ‖2
L2 which applied to a first kind integral equation produces

an integro-differential equation with boundary conditions as follows

b
∫

a

b
∫

a

k(v, s)k(v, t)xδα(δ)(t) dv dt + α(δ) =

b
∫

a

k(v, s)yδ(v) dv,

with xδ
α(δ)(a) = x1, xδ

α(δ)(b) = x2. As a parameter choice is used quasi-optimal method i.e. αk =

µαk−1, 0 < µ < 1, and then chooses the parameter that minimizes ‖ xδ
αn(δ)

− xδ
αn−1(δ)

‖ . The idea
of the Tikhonov multilevel schemes consists in: using n levels, the coarsest level is solved using the
discrepancy principle with Choleschy decomposition, and then the higher levels are solved using the
discrepancy stopping criterion with an iterative system solver, and, thus, it is reducing the operations
number visibly.

4 Numerical Experiments

Problem 1. Let the equation (derived from antenna design theory)

π
∫

−π

cos (st)x(t) dt = 2π [S((1 + s)π) + S((1− s)π)] ,

where S(s) =
s
∫

0

sin(u)
u

du, and the solution x(t) = 2π sin(t)
t

. After we transformed this equations from

[−π, π] to [0, 1], discretize it, and using the values h =
√

12δ
‖Khh‖

, α is chosen using the Morozov principle

on the coarsest grid (stepsize 4h), but α ≥ 0.00005 in order to prevent propagation of roundoff errors
in the interpolation procedure, the noise is tr(K t

hhKhh)δ, the data are presented in the table 1 and 2.
Problem 2. Let the Phillip’s equation

3
∫

−3

k(t− s)x(t) dt = y(s), s ∈ [−6, 6]
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δ/h iterations ‖ err ‖2
0.0005/0.0078125 21 0.0324145

0.00025/0.0039063 95 0.0241030

0.0001/0.0019531 348 0.0103711

Table 1: Results obtained with a standard Landweber iteration

δ/h α ‖ err ‖2
0.0005/0.0078125 0.02293 0.0254669

0.00025/0.0039063 0.00717 0.0158831

0.0001/0.0019531 0.00250 0.00739896

Table 2: Results obtained with a multigrid Landweber iteration

where k(u) =

{

1 + cos(πu/3), |u| ≤ 3
0, |u| ≥ 3,

and

y(s) =

{

(6− s)
[

1 + 1
2 cos(

πs
3 )
]

+ 9
2π sin(

πs
3 ), s ∈ [0, 6]

(6 + s)
[

1 + 1
2 cos(

πs
3 )
]

− 9
2π sin(

πs
3 ), s ∈ [−6, 0]

,

with the exact solution x(t) =

{

1 + cos(πt/3), |t| ≤ 3
0, |t| ≥ 3.

The initial value of α is 1, µ = 0.5, a noise y(sj)δθj where θ is a random number chosen from a uniform
distribution on [−1, 1], and the generalized discrepancy principle. The results are those from Table 3
and 4.

δ/h α ‖ err ‖2
0.0002/0.015625 0.005722 0.0490729

0.0001/0.0078125 0.002576 0.0322052

0.00002/0.00390625 0.0009570 0.0233487

Table 3: Results obtained with a standard Tikhonov method with 0’th order stabilizer

δ/tol α ‖ err ‖2
0.0002/10−6 0.003725 0.0391557

0.0001/10−6 0.001572 0.0260117

0.00002/10−8 0.0007053 0.0227495

Table 4: Results obtained with multigrid Tikhonov method
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