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Abstract

This paper deals with the study of laminar non-stationary flow of a viscous fluid between non-
axial cylinders. We are using the mediation method in Navier-Stokes equation. The problem is
reduced to a stationary one for which the conform domain transformation in a circular corona can
be applied. For this problem, the solution is determined by using the variables separation method.
The flow is accepted for different forms of the pressure gradient (%): linear, exponential study
and stability analysis
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1 The non-stationary case study

We are considering the non-stationary movement of a viscous incompressible fluid between two non-
axial cylinders, see figure 1. The equations of the viscous fluid’s laminar movement given by Navier-
Stokes, in which are considered the gravic force and the difference of a constant pressure generated by

a certain pump ,% = —f(t) =k, are:
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The initial and boundary conditions are:

w(r,0,t=0)=0
{w(T, 0,t)c =w(r,0,t)y =0 (2)

wher C and « are the contours of circles.
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Figure 1: Two non-axial cylinders between which the viscous fluid flows with laminar speed w

The flow is ensured by the incline plane and by the pump.
We are using the averaging method Slezkin-Targ [5]:

1 ow

We introduce (3) in (1) and obtain:
Pw 10w 1 0%w
— +t -+ 555 =Gt 4
o2 ror  r2060? ®) (4)
where G(t) = %%—zf + p% [g—i — pgsin a], considering pv = u, where p is the fluid density, x4 the dynamic
viscosity, and v the kinematic viscosity.
We apply the averaging over %—‘f term and obtain:
1oWw 1[0
=—— { P pg sin a} (5)

W= T o

We wish to eliminate G(t) in order to obtain Aw = 0. Given the following substitution:

G(t) -

w:v+7r sin? 0

By replacing in (4) the partial derivates we obtain the homogeneous equation in v

0%v 10w 1 02
o2 T rar "o ™

The boundary conditions (2) become:

—@r2 sin? 0; v = —@7“2 sin? @ (8)
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In the initial portrait of the two cylinders see figure 2, C (Oy,77),C (O2,12), r1 < 19 We say that
00;, =d.
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Figure 2: The portrait of the two non-axial cylinders
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Due to the fact that the cylinders are non-axial we have to aply an homographic conformable mapping

in order to obtain concentric cylinders [2]:
Mz+ N o
= —— = R v 9
P.rQ 9)

After applying the conformable mapping the cylinders become axial, so that C' (O;,r;) — C (0, 1)
si C(Ogz,19) — C (O, h). In order to ease the calculus we are going to make the following notations:

(A+1)z — (z7A + x1) . r3 — (d+r1)?
(A—1)z — (274 —21)’ r3 —(d—r)?’

h_l—i—\/ZA (TQ—T1>2—d2

7 =

11— VA’ (ro +11)% — d?

We switch to polar coordinates in order to obtain the r2sin? § product. We get the following result
for y?:
N R%sin? © [2A(ry + d) — 2A(r; — d))?

= = F1 (0
Y02 = (A 1)2R2 — 2(A2 — 1)Reos© + (A + 1) 12)(©)

which becomes:

9(21,2) = {Fl(@)’R (10)

=1
FZ(@)aR:h

Therefore:
16 sin? ©d? A2

A = T 2 Dewo + (A4 1P

3
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16h? sin? ©d? A?
(A—1)2h2 — 2(A2 — 1)hcosf + (A+1)2)?

Fy(0) =

Trough the conformable mapping the equation (7) becomes:

0% 1 Ov 1 92

- 7 i T 11
orz "Ror T moe (11)

wich allows as a particular solution

vo=alnR+b (12)

We use the variable separation method and search for a v of the following form: v = X (R)Y (©). By
replacing v in (11) we get:

" 1 1"

X X Y X X' Y
2— —_— = 2— —:——:—2
RX+RX+Y O@RX-FRX A

We obtain the equation: Y” 4+ A\2Y = 0 having Y = C} cos(\O) as solution due to the parity v(0) =
v(—©). For the Euler equation R2X” + RX’ — A2X = 0 with the solution: X = R" we find A\ = £n
This way is obtain the general solution for (11)

G - n —-n
V=g alnR+b+ > [anR" + byR™"] cosn® (13)

n=1

With the help of the conditions (8) in order to determine the Fourier coefficients that are part of the
solution (13), we get:
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{ Fi(©)=b+>7" (an + by) cosnO

F(©)=alnh+b+ > .2 (anh™ + by,h™™) cosnO (14)

implying the following system:

2 (7 2 (T
= —/ F1(©)dO,ay, + b, = —/ F1(©) cosnO©dO,
7 Jo m Jo

anh™ + buh™" = 3/ F5(0) cosn@©dO, alnh + b = 3/ F5(0)do
0

T 7 Jo

with the help of which we find the coefficients a, b, ay,b,. Going back to w = v + %7”2 sin® 6, the
moving speed of the viscous fluid between the two cylinders will be:

o0
w= _% la InR+b+ Z (anR™ + b, R™™) cos n® + r? sin? 9] (15)
n=1

In order to determine the solution for (15) we are using the averaging:

Ovg r2sin? 0
AD// —dzdy = AD// —dxdy A, // —dxdy (16)

To simplify we introduce the following notation:

Jop // (vo — r?sin®0) JAXdY (17)
2 D

Therefore the equation (16) becomes

W/

W=-—F 18
" (13)
A

with the solution given by W = Ce™ Zt. We place the initial conditions and get W) =C. In
order to determine the constant we go back to (5) in which G(0) = 0. In this context we obtain
C =vu[f(0) — pgsina]. The solution for equation (18) is therefore

W(t) = vu[£(0) — pgsinal e B! (19)
and the term G(¢) will have the following form:
. _Ap 1 .
G(t) = p[f(0) — pgsinale” B! + /() — pgsinal (20)

In these circumstances the solution for equation (15) can be determined directly and represents

the solution for the non-stationary case problem. . It can be observed that if ¢ — oo, G(t) =
% [—f(t) — pgsin ] the solution is stabilizing.
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2 The stationary case study

We rely on same demonstrations as for the non-stationary case and we’ll consider the equation (1)
but in which the time dependent term is missing. So, the equation that is designated to be solved is:

Pw 10w 1 0%w 1 [8])
0z

D i et (Pl Bt S i 21
"oz Trer T2 002 p Py =R a] (21)
wich is equivalent to the equation Aw = % using the substitution K = % — gsina. Therefore, the
particular solution of (21) will be:

K ,
=—r

24
We perform the function substitution w — w, = W from which we get AW = 0. By placing the
boundary conditions:

w, (22)

’w’c =0= W|C = —’wp]R:h = —%hz (23)
w[w =0= WH = —wp‘Rzl = —%
the equation (21) in the new unknown function becomes:
W 10w 1 9*W
- — =0 24
o i ar T2 g (24)

Looking for a solution of the following type W = X (r)Y (6) we get: Y = C cos \d, X = r™, from which
derives that A = 4+n. Therefore, the equation’s solution will be:

W =" (anr™ + byr™") cosnf (25)
n=1

We set the boundary conditions (23) in order to determine the coefficients that are part of W. There-
fore:

anh™ +b,h™" = %foﬂ —%h2 cos nfdo (26)
Ay + by = %foﬂ —% cos nédf
We get the solution of the problem for the stationary case:
K 2 - n -n
w= 1"+ (anr" + byr~") cosnb (27)

_2,u

n=1

2.1 Conclusions

1. k=0, the flow will be gravic with the factor —gsin« in the solution (24)

2. « = 0, in this situation only the pump acts over the installation and we have K = %, only the

k factor is present in the solution
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3. K = a =0, this case is not possible because the solution will be null.

These conclusions are the cases that stabilize the non-stationary solution (15) when t — oco. By
following the solution determination effective numerical calculus can be made also to determine the
debit @ = [¢p-¥-17dA. The mass and heat problem can be treated in the future.
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