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Abstract

It is consider a channel which aspirates a viscous fluid from an infinite space. The value of the stream function inside the domain is computed with an algebraic relation deducted from Navier Stokes equations; on the contour it is computed using boundary conditions in the case of small velocities. The computation of stream function in each point of domain is made by a C++ program which after computation saves stream function values and, ulterior, velocity values in .txt files. Besides, the program makes a graphical representation of stream lines spectrum, converting stream lines values into a lines and colours spectrum, and of velocities.

From a theoretical point of view the paper proves scientifically the patent [1] named Method and Device for Air Calibration of Gas Flow meters, having a high accuracy. 

1. Transformation of considered set of equations
The permanent two-dimensional movement of a viscous and incompressible fluid with a negligible weight is assigned by the following set of non-linear equations with partial derivative of Navier Stokes, written for dimensionless quantities (1), with the following characteristic quantities:

-     the channels width B and 

· mean velocity Um , which conveys the flow rate Q = BUm into the channel.
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The continuity equation being unstable in the numerical iterative computation is identically verified if we introduce the stream function 
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Eliminating the continuous, uniform and bounded function of pressure, in virtue of Schwarz’s commutative relation of 2nd order mixed derivative, through partial differentiation of the movement equations (1), for the stream function in each ordinary point of the domain 
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 the following equation with partial derivatives is

obtained: 
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(3)

which can be reduced to a two-harmonic linear equation for small velocity’s values 
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The equation (4) will lead us to a stable numerical solution unlike the non-linear left member of relation (3), which becomes unstable in points with null velocity components. To determine the values of the unknown functions we will use expansion in Taylor finite series.
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Fig. 1 Numbering of the nods of the orthogonal grid havingy of the nods of the orthogonal 
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In the vicinity of an ordinary point, the physic quantities which characterize the movement have some regularity conditions such as: continuity, uniformity, boundedness and consequently differentiation at least up to a certain order.
Thus, considering the symmetrical form of equation (4) in order to simplify the computation and to obtain the stability of the solution a rectangular grid (fig. 3) with a relative step h/B = χ = 1/B (B – width of channel) will be considered. The numbering of the grid’s nodes around the considered point O is chosen like in figure 1. Using the expansion in Taylor finite series for the dimensionless stream function ψ in the nodes of the rectangular grid (fig. 1), we can determine the values of all partial derivatives depending on the function values in the twelve points which are in the vicinity of ordinary point O.  We show below only the expressions of the first order derivatives (used in velocities distribution calculus):
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By introducing the expressions of these partial derivatives in equation (4) we will obtain the algebraic relation for the value of the function in the ordinary point O, depending of its value in other 12 vicinity points, at a Reynolds number equal to zero:
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This relation, which makes the connection between the value of the function ψ in an ordinary point O inside the domain and the values of function in the other 12 neighbour points, making abstraction of the boundary conditions on the contour, will be called algebraic relation associated to the differential equation (4). This relation can be called general solution. 

2. Numerical solution stability of the two-harmonic equation 

It is known that the difficulties in whichever differential equation integration are introduced by stability of the solution and by the boundary conditions on the boundaries of the domain, where appear so-called special points in which are imposed to the function certain supplementary conditions. 

Numerical solution stability does not depend on Reynolds number. Starting from the two-harmonic equation (7) and being obvious that the fineness of the grid is the same in all four directions of axis (fig. 3).

If we cross the grid in the positive direction of the Ox axis, namily starting from the 0 point to the 9 point, the errors appears in the grid points 3 and 11; when we cross the grid in the negative direction the errors appears in the points 1 and 9.

For example, we consider the case of crossing the grid in the positive direction of the Ox axis. We introduce the errors appeared in the grid (3 and 11 points) in the relation (7) and it obtains:
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Substracting the relation (7) from (8), crrosing the grid in the +x direction we will obtain the expression of the numerical solution’s:
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Into a general form, the relation (9) becomes:
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Starting from an ordinary point of the domain, on +x direction, the propagation of errors decreases monotonous with the row:
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Table 1. The stability of the numerical solution 

	psi n-1
	psi n
	psi n+1

	0
	1
	0.4

	1
	0.4
	0.11

	0.4
	0.11
	0.024

	0.11
	0.024
	0.0041

	0.024
	0.0041
	0.00044

	0.0041
	0.00044
	- 0.000029

	0.00044
	-2.9E-05
	-0.0000336

	-2.9E-05
	-0.0000336
	-0.00001199

	-0.0000336
	-0.00001199
	-0.000003116

	-0.00001199
	-0.000003116
	-6.469E-07

	-0.000003116
	-6.469E-07
	-1.0296E-07

	-6.469E-07
	-1.0296E-07
	-8.839E-09

	-1.0296E-07
	-8.839E-09
	1.6124E-09

	-8.839E-09
	1.6124E-09
	1.08691E-09

	psi n-1
	psi n
	psi n+1

	1.6124E-09
	1.08691E-09
	3.54144E-10

	1.08691E-09
	3.54144E-10
	8.73121E-11

	3.54144E-10
	8.73121E-11
	1.72176E-11

	8.73121E-11
	1.72176E-11
	2.52145E-12

	1.72176E-11
	2.52145E-12
	1.47698E-13

	2.52145E-12
	1.47698E-13
	-6.69932E-14

	1.47698E-13
	-6.69932E-14
	-3.41822E-14

	-6.69932E-14
	-3.41822E-14
	-1.03232E-14

	-3.41822E-14
	-1.03232E-14
	-2.42018E-15

	-1.03232E-14
	-2.42018E-15
	-4.5191E-16

	-2.42018E-15
	-4.5191E-16
	-5.97552E-17

	-4.5191E-16
	-5.97552E-17
	-1.30656E-18

	-5.97552E-17
	-1.30656E-18
	2.46513E-18

	-1.30656E-18
	2.46513E-18
	1.05138E-18

	2.46513E-18
	1.05138E-18
	2.97296E-19


In the chart from the figure 2 we can observe that the solution approach to zero. 

The propagation of error on the diagonals of the grid is oscillatory as sign and is damped 
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Fig. 2 The grid relaxation chart for the horizontally crossing in the positive direction of the Ox axis  
3. The boundary conditions specific to the studied case
The boundary conditions which must be imposed on the limits of a domain filled with a flowing fluid give to the general solution of the problem the connection between the geometrical specificity of the solid frontiers and the kinematical one of ideal or real fluid flow. Obviously, on these boundary conditions depends the physical reality of the studied phenomenon and, accordingly, the general character specific to the flow.   
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Fig. 3. Conditions assignation on the boundaries of the computational domain 
On the fluid frontiers of the domain we proceeded this way: 

· the radial velocity is computed 
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· knowing that 
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 are determined; 

· the difference between the stream function values
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· thus the value of the stream function on the contour can be computed

  
[image: image29.wmf]99

i

xx

i

=-

=

å

ydy

and 
[image: image30.wmf]3

j

yy

j

=

=

å

ydy

.

In the axis it was imposed ψ = 0 and on the walls of the channel ψ = 0.5 (fig. 3). 

4. The logical diagram of the computational programme

We consider an axial-symmetrical rectangular domain, made by i = 203 columns, (i = -101 ÷ +101) and j = 103 lines, (j = 1÷ 103). 

The computation is made in the whole domain excepting the channel because inside the channel it is known that at small velocities, Re ≈ 0, the stream lines are parallel. 

In every point inside the domain (i = -99 ÷ +99 and j = 3 ÷ 99) the stream function ψ will be computed with relation (7) and saved in a .txt file.  

For the velocities computation the formulas (5) and (6) are used. The resultant velocity 
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 will be saved in a .txt file.

In the end on the graph will be posted up: the velocities components in few conveniently chosen points from the domain and the velocity distribution into the channel’s entrance.

On the frontiers were followed the steps showed above with the specifications: 

  x = i∙χ and y = (j-2)∙χ.

It was made the specification that in the points where the stream function is minimum (ψ = 0) the programme uses red colour, when it is maximum (ψ = 0.5) the programme uses green and at intermediary values (0 < ψ < 0.5) – intermediary colours.
To simplify the operation mode and make it more accessible I created an interface with the help with can be easily varied the dimensions of the domain and channel and the computational error. In the window are also posted up: the time since the simulation runs, the line and column to which the computation reached and what operations are running at the moment (e.g.: compute the boundaries, compile, compute the stream function, save the values in .txt files, create the graph, etc.).      

Conclusions

For the analyzed domain the numerical solution of the stream function was obtained. The flow spectrum hereby, obtained and computed with a 10-6 error, is in accord with the physical reality (fig. 4). The values of stream function are known in each point.
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Fig. 4. Stream lines spectrum for the flow at the admission into a channel 

In figure 5 can be visualized the velocities components u0 and v0 in different points of the domain and the velocity distribution at the admission into a channel. In the entrance section can be seen that the velocity isn’t zero in the proximity of the wall. 

[image: image33.emf]
Fig. 5. The flow stabilization and the velocity distribution at the admission into a channel
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